Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159431087> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3159431087 endingPage "012032" @default.
- W3159431087 startingPage "012032" @default.
- W3159431087 abstract "Abstract This paper studies the performance of classical and quantum machine learning models for sentiment analysis task. Here, popular machine learning algorithms viz support vector machine (SVM), gradient boosting (GB) and random forest (RF) are compared with variational quantum classifier (VQC) using two sets of parameterized circuits viz EfficientSU2 and RealAmplitudes. For experimenting with VQC, IBM Quantum Experience and IBM Qiskit were used while for classical machine learning models, scikit-learn was used. It was found that the performance of the VQC was slightly better than popular machine learning algorithms. For our experiments, we have used popular restaurant sentiment analysis dataset. The extracted features from this dataset and then after applying PCA reduced the feature set into 5 features. Quantum ML models were trained using 100 epochs and 150 epochs. Overall, four Quantum ML models were trained and three Classical ML models were trained. The performance of the trained models was evaluated using standard evaluation measures viz, Accuracy, Precision, Recall, F-Score etc. In all the cases EfficientSU2 based model with 100 Epochs performed better than all other models. Efficient SU2 model with 100 epochs produced an accuracy of 74.5% and an F-Score of 0.7605 which were highest across all the trained models." @default.
- W3159431087 created "2021-05-10" @default.
- W3159431087 creator A5037247181 @default.
- W3159431087 creator A5065979880 @default.
- W3159431087 creator A5090765404 @default.
- W3159431087 date "2021-04-01" @default.
- W3159431087 modified "2023-10-05" @default.
- W3159431087 title "Comparing Classical ML Models with Quantum ML Models with Parametrized Circuits for Sentiment Analysis Task" @default.
- W3159431087 cites W14334640 @default.
- W3159431087 cites W1990514347 @default.
- W3159431087 cites W2790388700 @default.
- W3159431087 cites W2796293949 @default.
- W3159431087 cites W2903221501 @default.
- W3159431087 cites W2969454111 @default.
- W3159431087 cites W3102320711 @default.
- W3159431087 cites W3110874268 @default.
- W3159431087 doi "https://doi.org/10.1088/1742-6596/1854/1/012032" @default.
- W3159431087 hasPublicationYear "2021" @default.
- W3159431087 type Work @default.
- W3159431087 sameAs 3159431087 @default.
- W3159431087 citedByCount "2" @default.
- W3159431087 countsByYear W31594310872021 @default.
- W3159431087 countsByYear W31594310872023 @default.
- W3159431087 crossrefType "journal-article" @default.
- W3159431087 hasAuthorship W3159431087A5037247181 @default.
- W3159431087 hasAuthorship W3159431087A5065979880 @default.
- W3159431087 hasAuthorship W3159431087A5090765404 @default.
- W3159431087 hasBestOaLocation W31594310871 @default.
- W3159431087 hasConcept C11413529 @default.
- W3159431087 hasConcept C119857082 @default.
- W3159431087 hasConcept C121332964 @default.
- W3159431087 hasConcept C12267149 @default.
- W3159431087 hasConcept C137019171 @default.
- W3159431087 hasConcept C153180895 @default.
- W3159431087 hasConcept C154945302 @default.
- W3159431087 hasConcept C165464430 @default.
- W3159431087 hasConcept C169258074 @default.
- W3159431087 hasConcept C2779094486 @default.
- W3159431087 hasConcept C41008148 @default.
- W3159431087 hasConcept C46686674 @default.
- W3159431087 hasConcept C62520636 @default.
- W3159431087 hasConcept C66402592 @default.
- W3159431087 hasConcept C70153297 @default.
- W3159431087 hasConcept C84114770 @default.
- W3159431087 hasConcept C95623464 @default.
- W3159431087 hasConceptScore W3159431087C11413529 @default.
- W3159431087 hasConceptScore W3159431087C119857082 @default.
- W3159431087 hasConceptScore W3159431087C121332964 @default.
- W3159431087 hasConceptScore W3159431087C12267149 @default.
- W3159431087 hasConceptScore W3159431087C137019171 @default.
- W3159431087 hasConceptScore W3159431087C153180895 @default.
- W3159431087 hasConceptScore W3159431087C154945302 @default.
- W3159431087 hasConceptScore W3159431087C165464430 @default.
- W3159431087 hasConceptScore W3159431087C169258074 @default.
- W3159431087 hasConceptScore W3159431087C2779094486 @default.
- W3159431087 hasConceptScore W3159431087C41008148 @default.
- W3159431087 hasConceptScore W3159431087C46686674 @default.
- W3159431087 hasConceptScore W3159431087C62520636 @default.
- W3159431087 hasConceptScore W3159431087C66402592 @default.
- W3159431087 hasConceptScore W3159431087C70153297 @default.
- W3159431087 hasConceptScore W3159431087C84114770 @default.
- W3159431087 hasConceptScore W3159431087C95623464 @default.
- W3159431087 hasIssue "1" @default.
- W3159431087 hasLocation W31594310871 @default.
- W3159431087 hasOpenAccess W3159431087 @default.
- W3159431087 hasPrimaryLocation W31594310871 @default.
- W3159431087 hasRelatedWork W1996541855 @default.
- W3159431087 hasRelatedWork W2955385375 @default.
- W3159431087 hasRelatedWork W3100297620 @default.
- W3159431087 hasRelatedWork W3195168932 @default.
- W3159431087 hasRelatedWork W3208169454 @default.
- W3159431087 hasRelatedWork W3211193619 @default.
- W3159431087 hasRelatedWork W4212956667 @default.
- W3159431087 hasRelatedWork W4296081764 @default.
- W3159431087 hasRelatedWork W4379536929 @default.
- W3159431087 hasRelatedWork W4382701299 @default.
- W3159431087 hasVolume "1854" @default.
- W3159431087 isParatext "false" @default.
- W3159431087 isRetracted "false" @default.
- W3159431087 magId "3159431087" @default.
- W3159431087 workType "article" @default.