Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159436612> ?p ?o ?g. }
- W3159436612 endingPage "084007" @default.
- W3159436612 startingPage "084007" @default.
- W3159436612 abstract "Abstract Under a warming climate, an improved understanding of the water stored in snowpacks is becoming increasingly important for hydropower planning, flood risk assessment and water resource management. Due to inaccessibility and a lack of ground measurement networks, accurate quantification of snow water storage in mountainous terrains still remains a major challenge. Remote sensing can provide dynamic observations with extensive spatial coverage, and has proved a useful means to characterize snow water equivalent (SWE) at a large scale. However, current SWE products show very low quality in the mountainous areas due to very coarse spatial resolution, complex terrain, large spatial heterogeneity and deep snow. With more high-quality satellite data becoming available from the development of satellite sensors and platforms, it provides more opportunities for better estimation of snow conditions. Meanwhile, machine learning provides an important technique for handling the big data offered from remote sensing. Using the Överuman Catchment in Northern Sweden as a case study, this paper explores the potentials of machine learning for improving the estimation of mountain snow water storage using satellite observations, topographic factors, land cover information and ground SWE measurements from the spatially distributed snow survey. The results show that significantly improved SWE estimation close to the peak of snow accumulation can be achieved in the catchment using the random forest regression. This study demonstrates the potentials of machine learning for better understanding the snow water storage in mountainous areas." @default.
- W3159436612 created "2021-05-10" @default.
- W3159436612 creator A5006240381 @default.
- W3159436612 creator A5014169790 @default.
- W3159436612 creator A5020428380 @default.
- W3159436612 creator A5021170482 @default.
- W3159436612 creator A5048737087 @default.
- W3159436612 creator A5072379492 @default.
- W3159436612 creator A5079784603 @default.
- W3159436612 date "2021-07-28" @default.
- W3159436612 modified "2023-10-16" @default.
- W3159436612 title "Improving the snowpack monitoring in the mountainous areas of Sweden from space: a machine learning approach" @default.
- W3159436612 cites W1552916199 @default.
- W3159436612 cites W1634264213 @default.
- W3159436612 cites W1930628877 @default.
- W3159436612 cites W1967216421 @default.
- W3159436612 cites W1970641180 @default.
- W3159436612 cites W1979818948 @default.
- W3159436612 cites W1985712420 @default.
- W3159436612 cites W1987288027 @default.
- W3159436612 cites W1989503949 @default.
- W3159436612 cites W2004617477 @default.
- W3159436612 cites W2009026858 @default.
- W3159436612 cites W2012112068 @default.
- W3159436612 cites W2019149947 @default.
- W3159436612 cites W2021804645 @default.
- W3159436612 cites W2030398637 @default.
- W3159436612 cites W2057421428 @default.
- W3159436612 cites W2063544218 @default.
- W3159436612 cites W2080908843 @default.
- W3159436612 cites W2088864459 @default.
- W3159436612 cites W2090900562 @default.
- W3159436612 cites W2092970725 @default.
- W3159436612 cites W2093429038 @default.
- W3159436612 cites W2103497845 @default.
- W3159436612 cites W2108130906 @default.
- W3159436612 cites W2115475686 @default.
- W3159436612 cites W2129854181 @default.
- W3159436612 cites W2132824957 @default.
- W3159436612 cites W2133774712 @default.
- W3159436612 cites W2141018440 @default.
- W3159436612 cites W2157781874 @default.
- W3159436612 cites W2175776574 @default.
- W3159436612 cites W2270451005 @default.
- W3159436612 cites W2288668267 @default.
- W3159436612 cites W2291224976 @default.
- W3159436612 cites W2291349597 @default.
- W3159436612 cites W2417061449 @default.
- W3159436612 cites W2514631964 @default.
- W3159436612 cites W2597075798 @default.
- W3159436612 cites W2605927651 @default.
- W3159436612 cites W2610761597 @default.
- W3159436612 cites W2763635700 @default.
- W3159436612 cites W2792886864 @default.
- W3159436612 cites W2804132923 @default.
- W3159436612 cites W2888842680 @default.
- W3159436612 cites W2898057761 @default.
- W3159436612 cites W2911964244 @default.
- W3159436612 cites W2949759668 @default.
- W3159436612 cites W2971840388 @default.
- W3159436612 cites W2973027498 @default.
- W3159436612 cites W2977422968 @default.
- W3159436612 cites W3028009944 @default.
- W3159436612 cites W3034494053 @default.
- W3159436612 cites W3094112595 @default.
- W3159436612 cites W4232772892 @default.
- W3159436612 doi "https://doi.org/10.1088/1748-9326/abfe8d" @default.
- W3159436612 hasPublicationYear "2021" @default.
- W3159436612 type Work @default.
- W3159436612 sameAs 3159436612 @default.
- W3159436612 citedByCount "2" @default.
- W3159436612 countsByYear W31594366122023 @default.
- W3159436612 crossrefType "journal-article" @default.
- W3159436612 hasAuthorship W3159436612A5006240381 @default.
- W3159436612 hasAuthorship W3159436612A5014169790 @default.
- W3159436612 hasAuthorship W3159436612A5020428380 @default.
- W3159436612 hasAuthorship W3159436612A5021170482 @default.
- W3159436612 hasAuthorship W3159436612A5048737087 @default.
- W3159436612 hasAuthorship W3159436612A5072379492 @default.
- W3159436612 hasAuthorship W3159436612A5079784603 @default.
- W3159436612 hasBestOaLocation W31594366121 @default.
- W3159436612 hasConcept C114793014 @default.
- W3159436612 hasConcept C119599485 @default.
- W3159436612 hasConcept C127313418 @default.
- W3159436612 hasConcept C127413603 @default.
- W3159436612 hasConcept C146978453 @default.
- W3159436612 hasConcept C153294291 @default.
- W3159436612 hasConcept C161840515 @default.
- W3159436612 hasConcept C187320778 @default.
- W3159436612 hasConcept C19269812 @default.
- W3159436612 hasConcept C197046000 @default.
- W3159436612 hasConcept C201289731 @default.
- W3159436612 hasConcept C205649164 @default.
- W3159436612 hasConcept C2776182401 @default.
- W3159436612 hasConcept C2778877292 @default.
- W3159436612 hasConcept C39432304 @default.
- W3159436612 hasConcept C40675005 @default.
- W3159436612 hasConcept C58640448 @default.