Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159501627> ?p ?o ?g. }
- W3159501627 endingPage "2974" @default.
- W3159501627 startingPage "2959" @default.
- W3159501627 abstract "Abstract Founded on understanding of a slope’s likely failure mechanism, an early warning system for instability should alert users of accelerating slope deformation behaviour to enable safety-critical decisions to be made. Acoustic emission (AE) monitoring of active waveguides (i.e. a steel tube with granular internal/external backfill installed through a slope) is becoming an accepted monitoring technology for soil slope stability applications; however, challenges still exist to develop widely applicable AE interpretation strategies. The objective of this study was to develop and demonstrate the use of machine learning (ML) approaches to automatically classify landslide kinematics using AE measurements, based on the standard landslide velocity scale. Datasets from large-scale slope failure simulation experiments were used to train and test the ML models. In addition, an example field application using data from a reactivated landslide at Hollin Hill, North Yorkshire, UK, is presented. The results show that ML can automatically classify landslide kinematics using AE measurements with the accuracy of more than 90%. The combination of two AE features, AE rate and AE rate gradient, enable both velocity and acceleration classifications. A conceptual framework is presented for how this automatic approach would be used for landslide early warning in the field, with considerations given to potentially limited site-specific training data." @default.
- W3159501627 created "2021-05-10" @default.
- W3159501627 creator A5004957465 @default.
- W3159501627 creator A5007089544 @default.
- W3159501627 creator A5041974510 @default.
- W3159501627 creator A5073929840 @default.
- W3159501627 date "2021-05-04" @default.
- W3159501627 modified "2023-10-15" @default.
- W3159501627 title "Automatic classification of landslide kinematics using acoustic emission measurements and machine learning" @default.
- W3159501627 cites W1484160485 @default.
- W3159501627 cites W1529840045 @default.
- W3159501627 cites W1560641039 @default.
- W3159501627 cites W1596717185 @default.
- W3159501627 cites W1605688901 @default.
- W3159501627 cites W1969711429 @default.
- W3159501627 cites W1978456683 @default.
- W3159501627 cites W1992656360 @default.
- W3159501627 cites W2004671628 @default.
- W3159501627 cites W2011064195 @default.
- W3159501627 cites W2012027803 @default.
- W3159501627 cites W2031112711 @default.
- W3159501627 cites W2035103385 @default.
- W3159501627 cites W2054512946 @default.
- W3159501627 cites W2072357889 @default.
- W3159501627 cites W2072975664 @default.
- W3159501627 cites W2084341220 @default.
- W3159501627 cites W2089314377 @default.
- W3159501627 cites W2091881674 @default.
- W3159501627 cites W2098984225 @default.
- W3159501627 cites W2107074288 @default.
- W3159501627 cites W2128733372 @default.
- W3159501627 cites W2163558379 @default.
- W3159501627 cites W2213612645 @default.
- W3159501627 cites W2268577853 @default.
- W3159501627 cites W2269516007 @default.
- W3159501627 cites W2426031434 @default.
- W3159501627 cites W2516099463 @default.
- W3159501627 cites W2531209390 @default.
- W3159501627 cites W2552984579 @default.
- W3159501627 cites W2560194956 @default.
- W3159501627 cites W2567326027 @default.
- W3159501627 cites W2602516395 @default.
- W3159501627 cites W2786161705 @default.
- W3159501627 cites W2794998222 @default.
- W3159501627 cites W2805380449 @default.
- W3159501627 cites W2806446597 @default.
- W3159501627 cites W2891027816 @default.
- W3159501627 cites W2898170120 @default.
- W3159501627 cites W2910302825 @default.
- W3159501627 cites W2911964244 @default.
- W3159501627 cites W2913214568 @default.
- W3159501627 cites W2939238513 @default.
- W3159501627 cites W2971137478 @default.
- W3159501627 cites W2973208635 @default.
- W3159501627 cites W2975919096 @default.
- W3159501627 cites W2979371817 @default.
- W3159501627 cites W2999015335 @default.
- W3159501627 cites W2999964161 @default.
- W3159501627 cites W3005358466 @default.
- W3159501627 cites W3005928150 @default.
- W3159501627 cites W3021291609 @default.
- W3159501627 cites W3036661102 @default.
- W3159501627 cites W3043578023 @default.
- W3159501627 cites W3099802519 @default.
- W3159501627 cites W3102476541 @default.
- W3159501627 cites W3135010327 @default.
- W3159501627 cites W3208544874 @default.
- W3159501627 cites W3208674021 @default.
- W3159501627 cites W4239510810 @default.
- W3159501627 cites W4247605676 @default.
- W3159501627 doi "https://doi.org/10.1007/s10346-021-01676-8" @default.
- W3159501627 hasPublicationYear "2021" @default.
- W3159501627 type Work @default.
- W3159501627 sameAs 3159501627 @default.
- W3159501627 citedByCount "4" @default.
- W3159501627 countsByYear W31595016272021 @default.
- W3159501627 countsByYear W31595016272022 @default.
- W3159501627 countsByYear W31595016272023 @default.
- W3159501627 crossrefType "journal-article" @default.
- W3159501627 hasAuthorship W3159501627A5004957465 @default.
- W3159501627 hasAuthorship W3159501627A5007089544 @default.
- W3159501627 hasAuthorship W3159501627A5041974510 @default.
- W3159501627 hasAuthorship W3159501627A5073929840 @default.
- W3159501627 hasBestOaLocation W31595016271 @default.
- W3159501627 hasConcept C112972136 @default.
- W3159501627 hasConcept C117896860 @default.
- W3159501627 hasConcept C119857082 @default.
- W3159501627 hasConcept C121332964 @default.
- W3159501627 hasConcept C127313418 @default.
- W3159501627 hasConcept C154945302 @default.
- W3159501627 hasConcept C174598085 @default.
- W3159501627 hasConcept C186295008 @default.
- W3159501627 hasConcept C187320778 @default.
- W3159501627 hasConcept C205649164 @default.
- W3159501627 hasConcept C24890656 @default.
- W3159501627 hasConcept C2778755073 @default.
- W3159501627 hasConcept C29825287 @default.
- W3159501627 hasConcept C39920418 @default.