Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159553016> ?p ?o ?g. }
- W3159553016 endingPage "112464" @default.
- W3159553016 startingPage "112464" @default.
- W3159553016 abstract "McArthur's foliage height diversity (FHD) has been the gold standard in the determination of structural complexity of forests characterized by LiDAR vertical height profiles. It is based on Shannon's entropy index, which was originally designed to describe evenness in abundances among qualitative typologies, and thus the calculation of FHD involves subjective layering steps which are essentially unnatural to describe a continuous variable (X) such as height. In this contribution we aim to provide a mathematical framework for determining maximum entropy in 3D remote sensing datasets based on the Gini Coefficient of theoretical continuous distributions, intended to replace FHD as entropy measure in vertical profiles of LiDAR heights (1D, X), with extensions to variables expressing dimensions of higher order (2D or 3D, Z ∝ X2 or X3). Then we apply this framework to Boreal forests in Finland to describe landscape heterogeneity with the intention to improve the modelling of forest aboveground biomass (AGB), hypothesizing that LiDAR models of AGB should essentially be different in areas of differing structural characteristics. We carried out a pre-stratification of LiDAR data collected in 2012 using simple rules applied to the L-skewness (Lskew) and L-coefficient of variation of LiDAR echo heights (Lcv; equivalent to the Gini coefficient, GCH), determining a new threshold at GCH = 0.33 as a consequence of the newly developed mathematical proofs. We observed only moderate improvements in terms of model accuracies: RMSDs reduced from 41.7% to 38.9 or 37.0%. More remarkably, we identified critical differences in the metrics selected at each stratum, which is useful to understand what predictor variables are more important for estimating AGB at each area of a forest. We observed that higher LiDAR height percentiles are more relevant at open canopies and heterogeneous forests, whereas closed canopies in homogeneous forests obtain most accurate predictions from a combination of cover metrics and percentiles around the median. Without stratification, the overall model would neglect explained variability in the structural types of lower occurrence, and predictions from a model influenced by structural types of higher occurrence would be biased at those areas. These results are thus useful in terms of improving our understanding on the relationships underlying LiDAR-AGB models." @default.
- W3159553016 created "2021-05-10" @default.
- W3159553016 creator A5000080878 @default.
- W3159553016 creator A5001222031 @default.
- W3159553016 creator A5042025961 @default.
- W3159553016 creator A5056765643 @default.
- W3159553016 creator A5057544053 @default.
- W3159553016 creator A5085511466 @default.
- W3159553016 date "2021-07-01" @default.
- W3159553016 modified "2023-10-06" @default.
- W3159553016 title "Determining maximum entropy in 3D remote sensing height distributions and using it to improve aboveground biomass modelling via stratification" @default.
- W3159553016 cites W1492314380 @default.
- W3159553016 cites W1856305057 @default.
- W3159553016 cites W1968054382 @default.
- W3159553016 cites W1973428156 @default.
- W3159553016 cites W1975937257 @default.
- W3159553016 cites W1977886272 @default.
- W3159553016 cites W1988377997 @default.
- W3159553016 cites W1995602130 @default.
- W3159553016 cites W1995875735 @default.
- W3159553016 cites W1996263757 @default.
- W3159553016 cites W2002730835 @default.
- W3159553016 cites W2009451364 @default.
- W3159553016 cites W2015306388 @default.
- W3159553016 cites W2019861195 @default.
- W3159553016 cites W2023353527 @default.
- W3159553016 cites W2027319497 @default.
- W3159553016 cites W2028901390 @default.
- W3159553016 cites W2038596493 @default.
- W3159553016 cites W2040120109 @default.
- W3159553016 cites W2046368120 @default.
- W3159553016 cites W2046600498 @default.
- W3159553016 cites W2048463265 @default.
- W3159553016 cites W2048950501 @default.
- W3159553016 cites W2054058513 @default.
- W3159553016 cites W2061219066 @default.
- W3159553016 cites W2063335319 @default.
- W3159553016 cites W2073597988 @default.
- W3159553016 cites W2083667368 @default.
- W3159553016 cites W2085741981 @default.
- W3159553016 cites W2087510526 @default.
- W3159553016 cites W2091688953 @default.
- W3159553016 cites W2105826543 @default.
- W3159553016 cites W2113569325 @default.
- W3159553016 cites W2119264734 @default.
- W3159553016 cites W2121942758 @default.
- W3159553016 cites W2122798004 @default.
- W3159553016 cites W2124399548 @default.
- W3159553016 cites W2126448057 @default.
- W3159553016 cites W2131472136 @default.
- W3159553016 cites W2140175581 @default.
- W3159553016 cites W2140899781 @default.
- W3159553016 cites W2149865537 @default.
- W3159553016 cites W2152515840 @default.
- W3159553016 cites W2158161282 @default.
- W3159553016 cites W2161136770 @default.
- W3159553016 cites W2170110669 @default.
- W3159553016 cites W2179206012 @default.
- W3159553016 cites W2195880011 @default.
- W3159553016 cites W2273297058 @default.
- W3159553016 cites W2308708607 @default.
- W3159553016 cites W2317385167 @default.
- W3159553016 cites W2317739826 @default.
- W3159553016 cites W2327277813 @default.
- W3159553016 cites W2337203014 @default.
- W3159553016 cites W2538404941 @default.
- W3159553016 cites W2608232016 @default.
- W3159553016 cites W269669389 @default.
- W3159553016 cites W2765084369 @default.
- W3159553016 cites W2767594761 @default.
- W3159553016 cites W2790767922 @default.
- W3159553016 cites W2796528219 @default.
- W3159553016 cites W2889301028 @default.
- W3159553016 cites W2899336860 @default.
- W3159553016 cites W2914261052 @default.
- W3159553016 cites W2936101281 @default.
- W3159553016 cites W2940505306 @default.
- W3159553016 cites W2942053056 @default.
- W3159553016 cites W2973367787 @default.
- W3159553016 cites W2983698567 @default.
- W3159553016 cites W2991204505 @default.
- W3159553016 cites W2995101791 @default.
- W3159553016 cites W3025652605 @default.
- W3159553016 cites W3035154995 @default.
- W3159553016 cites W2764243986 @default.
- W3159553016 doi "https://doi.org/10.1016/j.rse.2021.112464" @default.
- W3159553016 hasPublicationYear "2021" @default.
- W3159553016 type Work @default.
- W3159553016 sameAs 3159553016 @default.
- W3159553016 citedByCount "11" @default.
- W3159553016 countsByYear W31595530162021 @default.
- W3159553016 countsByYear W31595530162022 @default.
- W3159553016 countsByYear W31595530162023 @default.
- W3159553016 crossrefType "journal-article" @default.
- W3159553016 hasAuthorship W3159553016A5000080878 @default.
- W3159553016 hasAuthorship W3159553016A5001222031 @default.
- W3159553016 hasAuthorship W3159553016A5042025961 @default.
- W3159553016 hasAuthorship W3159553016A5056765643 @default.