Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159558183> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3159558183 endingPage "18" @default.
- W3159558183 startingPage "1" @default.
- W3159558183 abstract "Image dehazing has become a fundamental problem of common concern in computer vision-driven maritime intelligent transportation systems (ITS). The purpose of image dehazing is to reconstruct the latent haze-free image from its observed hazy version. It is well known that the accurate estimation of transmission map plays a vital role in image dehazing. In this work, the coarse transmission map is firstly estimated using a robust fusion-based strategy. A unified optimization framework is then proposed to estimate the refined transmission map and latent sharp image simultaneously. The resulting constrained minimization model is solved using a two-step optimization algorithm. To further enhance dehazing performance, the solutions of subproblems obtained in this optimization algorithm are equivalent to deep learning-based image denoising. Due to the powerful representation ability, the proposed method can accurately and robustly estimate the transmission map and latent sharp image. Numerous experiments on both synthetic and realistic datasets have been performed to compare our method with several state-of-the-art dehazing methods. Dehazing results have demonstrated the proposed method’s superior imaging performance in terms of both quantitative and qualitative evaluations. The enhanced imaging quality is beneficial for practical applications in maritime ITS, for example, vessel detection, recognition, and tracking." @default.
- W3159558183 created "2021-05-10" @default.
- W3159558183 creator A5001514889 @default.
- W3159558183 creator A5003703232 @default.
- W3159558183 creator A5005304261 @default.
- W3159558183 creator A5037677450 @default.
- W3159558183 date "2021-04-30" @default.
- W3159558183 modified "2023-10-05" @default.
- W3159558183 title "Deep Learning-Enabled Variational Optimization Method for Image Dehazing in Maritime Intelligent Transportation Systems" @default.
- W3159558183 cites W125693051 @default.
- W3159558183 cites W2156936307 @default.
- W3159558183 cites W2256362396 @default.
- W3159558183 cites W2294876837 @default.
- W3159558183 cites W2518979500 @default.
- W3159558183 cites W2519481857 @default.
- W3159558183 cites W2752480486 @default.
- W3159558183 cites W2890600890 @default.
- W3159558183 cites W2901568975 @default.
- W3159558183 cites W2934848816 @default.
- W3159558183 cites W2972158684 @default.
- W3159558183 cites W3010377716 @default.
- W3159558183 cites W3048737448 @default.
- W3159558183 doi "https://doi.org/10.1155/2021/6658763" @default.
- W3159558183 hasPublicationYear "2021" @default.
- W3159558183 type Work @default.
- W3159558183 sameAs 3159558183 @default.
- W3159558183 citedByCount "2" @default.
- W3159558183 countsByYear W31595581832022 @default.
- W3159558183 countsByYear W31595581832023 @default.
- W3159558183 crossrefType "journal-article" @default.
- W3159558183 hasAuthorship W3159558183A5001514889 @default.
- W3159558183 hasAuthorship W3159558183A5003703232 @default.
- W3159558183 hasAuthorship W3159558183A5005304261 @default.
- W3159558183 hasAuthorship W3159558183A5037677450 @default.
- W3159558183 hasBestOaLocation W31595581831 @default.
- W3159558183 hasConcept C11413529 @default.
- W3159558183 hasConcept C115961682 @default.
- W3159558183 hasConcept C137836250 @default.
- W3159558183 hasConcept C147764199 @default.
- W3159558183 hasConcept C154945302 @default.
- W3159558183 hasConcept C17744445 @default.
- W3159558183 hasConcept C199360897 @default.
- W3159558183 hasConcept C199539241 @default.
- W3159558183 hasConcept C2776359362 @default.
- W3159558183 hasConcept C31972630 @default.
- W3159558183 hasConcept C41008148 @default.
- W3159558183 hasConcept C69744172 @default.
- W3159558183 hasConcept C761482 @default.
- W3159558183 hasConcept C76155785 @default.
- W3159558183 hasConcept C94625758 @default.
- W3159558183 hasConceptScore W3159558183C11413529 @default.
- W3159558183 hasConceptScore W3159558183C115961682 @default.
- W3159558183 hasConceptScore W3159558183C137836250 @default.
- W3159558183 hasConceptScore W3159558183C147764199 @default.
- W3159558183 hasConceptScore W3159558183C154945302 @default.
- W3159558183 hasConceptScore W3159558183C17744445 @default.
- W3159558183 hasConceptScore W3159558183C199360897 @default.
- W3159558183 hasConceptScore W3159558183C199539241 @default.
- W3159558183 hasConceptScore W3159558183C2776359362 @default.
- W3159558183 hasConceptScore W3159558183C31972630 @default.
- W3159558183 hasConceptScore W3159558183C41008148 @default.
- W3159558183 hasConceptScore W3159558183C69744172 @default.
- W3159558183 hasConceptScore W3159558183C761482 @default.
- W3159558183 hasConceptScore W3159558183C76155785 @default.
- W3159558183 hasConceptScore W3159558183C94625758 @default.
- W3159558183 hasFunder F4320321001 @default.
- W3159558183 hasLocation W31595581831 @default.
- W3159558183 hasLocation W31595581832 @default.
- W3159558183 hasOpenAccess W3159558183 @default.
- W3159558183 hasPrimaryLocation W31595581831 @default.
- W3159558183 hasRelatedWork W1968790341 @default.
- W3159558183 hasRelatedWork W1979848552 @default.
- W3159558183 hasRelatedWork W1990216444 @default.
- W3159558183 hasRelatedWork W2010729749 @default.
- W3159558183 hasRelatedWork W2101992317 @default.
- W3159558183 hasRelatedWork W2419576664 @default.
- W3159558183 hasRelatedWork W2900568167 @default.
- W3159558183 hasRelatedWork W3007420330 @default.
- W3159558183 hasRelatedWork W4312613727 @default.
- W3159558183 hasRelatedWork W2318670660 @default.
- W3159558183 hasVolume "2021" @default.
- W3159558183 isParatext "false" @default.
- W3159558183 isRetracted "false" @default.
- W3159558183 magId "3159558183" @default.
- W3159558183 workType "article" @default.