Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159559011> ?p ?o ?g. }
- W3159559011 endingPage "107438" @default.
- W3159559011 startingPage "107438" @default.
- W3159559011 abstract "Accurate building energy consumption (BEC) prediction plays an increasingly significant role in energy control and conservation. However, owing to the high level of randomness of BEC data, acquiring accurate prediction results is difficult. To further enhance the predicted precision and robustness, we herein present a non-iterative decomposition–integration model to realise BEC prediction. Our proposed method merges the ensemble empirical mode decomposition (EEMD), learning using a privileged information (LUPI) paradigm-based random vector functional link network (RVFL+), and support vector regression (SVR) to generate satisfactory results. In this model, EEMD is first adopted for the decomposition of historical energy consumption data. Subsequently, the decomposed subsignals are input into the RVFL+ network, and the features of high correlation with BEC are selected as privileged information to constrain the weight of the output layer of RVFL+ network in order to obtain their corresponding output RVFL+ models of each subsignal. Finally, the resulting RVFL+ output models are aggregated and input into the SVR model to acquire the prediction results, thereby breaking through the limitation of the single-prediction model and improving prediction accuracy. To verify our proposed model, five actual BEC datasets were employed for experiments: Jinan in China, Fairbanks and California in the USA, Vancouver in Canada, and Sydney in Australia. Experiment results indicated that our proposed EEMD-RVFL+-SVR method had better accuracy and anti-noise performance. Specially, the mean absolute percentage error of the proposed method, compared with the EMD-SVR, EEMD-SVR, EEMD-PSO-GA-SVR, EEMD-RVFL, ARIMA-SVM, FLS-SVM, EMD-RVFL+-SVR, CEEMD-RVFL+-SVR, SVR, RVFL, RVFL+, BPNN, and Wavelet neural network, was reduced by 65.07%, 37.20%, 40.61%, 52.27%, 44.66%, 34.76%, 50.01%, 39.06%, 43.04%, 53.77%, 46.38%, 41.82% and 56.14% respectively." @default.
- W3159559011 created "2021-05-10" @default.
- W3159559011 creator A5011750649 @default.
- W3159559011 creator A5031801474 @default.
- W3159559011 creator A5040432672 @default.
- W3159559011 creator A5071821810 @default.
- W3159559011 creator A5085317250 @default.
- W3159559011 date "2021-09-01" @default.
- W3159559011 modified "2023-09-23" @default.
- W3159559011 title "Privileged information-driven random network based non-iterative integration model for building energy consumption prediction" @default.
- W3159559011 cites W1793209788 @default.
- W3159559011 cites W1988224834 @default.
- W3159559011 cites W1991277158 @default.
- W3159559011 cites W1996640396 @default.
- W3159559011 cites W2005971284 @default.
- W3159559011 cites W2006934323 @default.
- W3159559011 cites W2007221293 @default.
- W3159559011 cites W2016944307 @default.
- W3159559011 cites W2067562626 @default.
- W3159559011 cites W2079335151 @default.
- W3159559011 cites W2081584380 @default.
- W3159559011 cites W2111528621 @default.
- W3159559011 cites W2120390927 @default.
- W3159559011 cites W2138383519 @default.
- W3159559011 cites W2229668941 @default.
- W3159559011 cites W2268331518 @default.
- W3159559011 cites W2286961399 @default.
- W3159559011 cites W2298132732 @default.
- W3159559011 cites W2394184881 @default.
- W3159559011 cites W2490223215 @default.
- W3159559011 cites W2503218125 @default.
- W3159559011 cites W2590661630 @default.
- W3159559011 cites W2604099671 @default.
- W3159559011 cites W2753295253 @default.
- W3159559011 cites W2761146210 @default.
- W3159559011 cites W2766748528 @default.
- W3159559011 cites W2792344217 @default.
- W3159559011 cites W2810149872 @default.
- W3159559011 cites W2896636445 @default.
- W3159559011 cites W2896761929 @default.
- W3159559011 cites W2898939125 @default.
- W3159559011 cites W2907706982 @default.
- W3159559011 cites W2912162873 @default.
- W3159559011 cites W2913226484 @default.
- W3159559011 cites W2913771521 @default.
- W3159559011 cites W2913918840 @default.
- W3159559011 cites W2920873814 @default.
- W3159559011 cites W2920901284 @default.
- W3159559011 cites W2921058475 @default.
- W3159559011 cites W2924028299 @default.
- W3159559011 cites W2941861054 @default.
- W3159559011 cites W2948490758 @default.
- W3159559011 cites W2950095140 @default.
- W3159559011 cites W2954960318 @default.
- W3159559011 cites W2964401628 @default.
- W3159559011 cites W2980236791 @default.
- W3159559011 cites W2994876556 @default.
- W3159559011 cites W2995135166 @default.
- W3159559011 cites W2998186794 @default.
- W3159559011 cites W3002119178 @default.
- W3159559011 cites W3004780809 @default.
- W3159559011 cites W3008235510 @default.
- W3159559011 cites W3010335229 @default.
- W3159559011 cites W3013697446 @default.
- W3159559011 cites W3016565047 @default.
- W3159559011 cites W3017024051 @default.
- W3159559011 cites W3025194661 @default.
- W3159559011 cites W3035595432 @default.
- W3159559011 cites W3035902289 @default.
- W3159559011 cites W3036110098 @default.
- W3159559011 cites W3038202720 @default.
- W3159559011 cites W3044752582 @default.
- W3159559011 cites W3047937490 @default.
- W3159559011 cites W3082271877 @default.
- W3159559011 cites W3093375032 @default.
- W3159559011 cites W3095810316 @default.
- W3159559011 cites W4239510810 @default.
- W3159559011 doi "https://doi.org/10.1016/j.asoc.2021.107438" @default.
- W3159559011 hasPublicationYear "2021" @default.
- W3159559011 type Work @default.
- W3159559011 sameAs 3159559011 @default.
- W3159559011 citedByCount "12" @default.
- W3159559011 countsByYear W31595590112022 @default.
- W3159559011 countsByYear W31595590112023 @default.
- W3159559011 crossrefType "journal-article" @default.
- W3159559011 hasAuthorship W3159559011A5011750649 @default.
- W3159559011 hasAuthorship W3159559011A5031801474 @default.
- W3159559011 hasAuthorship W3159559011A5040432672 @default.
- W3159559011 hasAuthorship W3159559011A5071821810 @default.
- W3159559011 hasAuthorship W3159559011A5085317250 @default.
- W3159559011 hasConcept C104317684 @default.
- W3159559011 hasConcept C105795698 @default.
- W3159559011 hasConcept C112633086 @default.
- W3159559011 hasConcept C11413529 @default.
- W3159559011 hasConcept C119857082 @default.
- W3159559011 hasConcept C12267149 @default.
- W3159559011 hasConcept C124101348 @default.
- W3159559011 hasConcept C125112378 @default.