Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159625140> ?p ?o ?g. }
- W3159625140 endingPage "101" @default.
- W3159625140 startingPage "77" @default.
- W3159625140 abstract "Abstract Objective: Electroencephalography (EEG) has an influential role in neuroscience and commercial applications. Most of the tools available for EEG signal analysis use machine learning to extract the required information. So, the study of robust techniques for feature extraction and classification is an important thing to understand the practical use of EEG. The paper aims that if there is any special tool for a particular task. Which feature domain or classifier has a significant role in EEG signal analysis? Approach: It presents a detailed report of the current trend for bio-electrical signals classification focusing on various classifiers’ advantages and disadvantages. This study includes literature from 2000 to 2021 with a brief description of EEG signal origin and advancement in classification techniques. Results: Randomly used classifiers for EEG signal can be categorized into five classes, namely Linear Classifiers, Nearest Neighbor Classifiers, Nonlinear Bayesian Classifiers, Neural Networks, and Combinations of Classifiers. Approximately 40% of studies use Support Vector Machine, Nearest Neighbor, and their combination with others. For specific tasks, particular classifiers are recommended in the survey. Features can be defined into four categories, namely TDFs, FDFs, TFDFs, and statistical features, where 39% of studies used TFDFs. Multi-domains features are preferred when the required information cannot be obtained from one domain. Significance: The paper summarizes the recent approaches for feature extraction and classification of EEG signals. It describes the brain waves with their classification, related behavior, and task with the physiological correlation. The comparative analysis of different classifiers, toolbox, the channel used, accuracy, and the number of subjects from various studies can help the practitioners choose a suitable classifier. Furthermore, future directions can cope up with the relevant problems and can lead to accurate classification." @default.
- W3159625140 created "2021-05-10" @default.
- W3159625140 creator A5007260578 @default.
- W3159625140 creator A5014220690 @default.
- W3159625140 creator A5038458324 @default.
- W3159625140 date "2021-05-04" @default.
- W3159625140 modified "2023-10-03" @default.
- W3159625140 title "Recent Approaches on Classification and Feature Extraction of EEG Signal: A Review" @default.
- W3159625140 cites W1535077630 @default.
- W3159625140 cites W1906985535 @default.
- W3159625140 cites W1970981493 @default.
- W3159625140 cites W1988150589 @default.
- W3159625140 cites W1992852845 @default.
- W3159625140 cites W1998568814 @default.
- W3159625140 cites W2005791255 @default.
- W3159625140 cites W2011484846 @default.
- W3159625140 cites W2011928137 @default.
- W3159625140 cites W2022856590 @default.
- W3159625140 cites W2028719086 @default.
- W3159625140 cites W2052739683 @default.
- W3159625140 cites W2057983743 @default.
- W3159625140 cites W2059923013 @default.
- W3159625140 cites W2074089591 @default.
- W3159625140 cites W2074838957 @default.
- W3159625140 cites W2075647286 @default.
- W3159625140 cites W2078638303 @default.
- W3159625140 cites W2086809917 @default.
- W3159625140 cites W2097171469 @default.
- W3159625140 cites W2098844365 @default.
- W3159625140 cites W2109414107 @default.
- W3159625140 cites W2117302257 @default.
- W3159625140 cites W2124406722 @default.
- W3159625140 cites W2130924765 @default.
- W3159625140 cites W2131321253 @default.
- W3159625140 cites W2139564752 @default.
- W3159625140 cites W2141849483 @default.
- W3159625140 cites W2146007548 @default.
- W3159625140 cites W2148506473 @default.
- W3159625140 cites W2151669316 @default.
- W3159625140 cites W2156993508 @default.
- W3159625140 cites W2158812543 @default.
- W3159625140 cites W2167388003 @default.
- W3159625140 cites W2171872429 @default.
- W3159625140 cites W2176865601 @default.
- W3159625140 cites W2324065775 @default.
- W3159625140 cites W2557120303 @default.
- W3159625140 cites W2557143518 @default.
- W3159625140 cites W2594565934 @default.
- W3159625140 cites W2599463079 @default.
- W3159625140 cites W2616977573 @default.
- W3159625140 cites W2735939755 @default.
- W3159625140 cites W2767610772 @default.
- W3159625140 cites W2770341796 @default.
- W3159625140 cites W2775259072 @default.
- W3159625140 cites W2775771862 @default.
- W3159625140 cites W2793136243 @default.
- W3159625140 cites W2794345050 @default.
- W3159625140 cites W2883805690 @default.
- W3159625140 cites W2888351862 @default.
- W3159625140 cites W2892542319 @default.
- W3159625140 cites W2894777010 @default.
- W3159625140 cites W2901482878 @default.
- W3159625140 cites W2901835597 @default.
- W3159625140 cites W2905341383 @default.
- W3159625140 cites W2915893085 @default.
- W3159625140 cites W2922188941 @default.
- W3159625140 cites W2941201298 @default.
- W3159625140 cites W2984598623 @default.
- W3159625140 cites W2996722826 @default.
- W3159625140 cites W2996870312 @default.
- W3159625140 cites W3043178100 @default.
- W3159625140 cites W3044317125 @default.
- W3159625140 cites W3082415811 @default.
- W3159625140 cites W4244158321 @default.
- W3159625140 cites W4248643182 @default.
- W3159625140 cites W4253496191 @default.
- W3159625140 cites W976039271 @default.
- W3159625140 doi "https://doi.org/10.1017/s0263574721000382" @default.
- W3159625140 hasPublicationYear "2021" @default.
- W3159625140 type Work @default.
- W3159625140 sameAs 3159625140 @default.
- W3159625140 citedByCount "18" @default.
- W3159625140 countsByYear W31596251402022 @default.
- W3159625140 countsByYear W31596251402023 @default.
- W3159625140 crossrefType "journal-article" @default.
- W3159625140 hasAuthorship W3159625140A5007260578 @default.
- W3159625140 hasAuthorship W3159625140A5014220690 @default.
- W3159625140 hasAuthorship W3159625140A5038458324 @default.
- W3159625140 hasConcept C113238511 @default.
- W3159625140 hasConcept C118552586 @default.
- W3159625140 hasConcept C119857082 @default.
- W3159625140 hasConcept C12267149 @default.
- W3159625140 hasConcept C153180895 @default.
- W3159625140 hasConcept C154945302 @default.
- W3159625140 hasConcept C15744967 @default.
- W3159625140 hasConcept C41008148 @default.
- W3159625140 hasConcept C52001869 @default.
- W3159625140 hasConcept C522805319 @default.