Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159641566> ?p ?o ?g. }
- W3159641566 abstract "Computational Fluid Dynamics (CFD) simulations are a very important tool for many industrial applications, such as aerodynamic optimization of engineering designs like cars shapes, airplanes parts etc. The output of such simulations, in particular the calculated flow fields, are usually very complex and hard to interpret for realistic three-dimensional real-world applications, especially if time-dependent simulations are investigated. Automated data analysis methods are warranted but a non-trivial obstacle is given by the very large dimensionality of the data. A flow field typically consists of six measurement values for each point of the computational grid in 3D space and time (velocity vector values, turbulent kinetic energy, pressure and viscosity). In this paper we address the task of extracting meaningful results in an automated manner from such high dimensional data sets. We propose deep learning methods which are capable of processing such data and which can be trained to solve relevant tasks on simulation data, i.e. predicting drag and lift forces applied on an airfoil. We also propose an adaptation of the classical hand crafted features known from computer vision to address the same problem and compare a large variety of descriptors and detectors. Finally, we compile a large dataset of 2D simulations of the flow field around airfoils which contains 16000 flow fields with which we tested and compared approaches. Our results show that the deep learning-based methods, as well as hand crafted feature based approaches, are well-capable to accurately describe the content of the CFD simulation output on the proposed dataset." @default.
- W3159641566 created "2021-05-10" @default.
- W3159641566 creator A5004895426 @default.
- W3159641566 creator A5017541508 @default.
- W3159641566 creator A5019258607 @default.
- W3159641566 creator A5048071187 @default.
- W3159641566 creator A5049953967 @default.
- W3159641566 creator A5062646838 @default.
- W3159641566 date "2021-03-11" @default.
- W3159641566 modified "2023-09-27" @default.
- W3159641566 title "PREPRINT: Comparison of deep learning and hand crafted features for mining simulation data." @default.
- W3159641566 cites W1491719799 @default.
- W3159641566 cites W1522301498 @default.
- W3159641566 cites W1533496907 @default.
- W3159641566 cites W1596812151 @default.
- W3159641566 cites W1677409904 @default.
- W3159641566 cites W1966811077 @default.
- W3159641566 cites W1992135843 @default.
- W3159641566 cites W1993229407 @default.
- W3159641566 cites W1995266040 @default.
- W3159641566 cites W2044229172 @default.
- W3159641566 cites W2085411191 @default.
- W3159641566 cites W2101234009 @default.
- W3159641566 cites W2117228865 @default.
- W3159641566 cites W2131846894 @default.
- W3159641566 cites W2141584146 @default.
- W3159641566 cites W2151103935 @default.
- W3159641566 cites W2153185908 @default.
- W3159641566 cites W2172188317 @default.
- W3159641566 cites W2292272678 @default.
- W3159641566 cites W2515505748 @default.
- W3159641566 cites W2518260411 @default.
- W3159641566 cites W2534240011 @default.
- W3159641566 cites W2569680626 @default.
- W3159641566 cites W2605349868 @default.
- W3159641566 cites W2737094507 @default.
- W3159641566 cites W2770233088 @default.
- W3159641566 cites W2896847007 @default.
- W3159641566 cites W2949117887 @default.
- W3159641566 cites W2982191860 @default.
- W3159641566 cites W2989483616 @default.
- W3159641566 cites W2990443604 @default.
- W3159641566 cites W3210232381 @default.
- W3159641566 hasPublicationYear "2021" @default.
- W3159641566 type Work @default.
- W3159641566 sameAs 3159641566 @default.
- W3159641566 citedByCount "0" @default.
- W3159641566 crossrefType "posted-content" @default.
- W3159641566 hasAuthorship W3159641566A5004895426 @default.
- W3159641566 hasAuthorship W3159641566A5017541508 @default.
- W3159641566 hasAuthorship W3159641566A5019258607 @default.
- W3159641566 hasAuthorship W3159641566A5048071187 @default.
- W3159641566 hasAuthorship W3159641566A5049953967 @default.
- W3159641566 hasAuthorship W3159641566A5062646838 @default.
- W3159641566 hasConcept C108583219 @default.
- W3159641566 hasConcept C111030470 @default.
- W3159641566 hasConcept C112124176 @default.
- W3159641566 hasConcept C119857082 @default.
- W3159641566 hasConcept C127413603 @default.
- W3159641566 hasConcept C13393347 @default.
- W3159641566 hasConcept C139002025 @default.
- W3159641566 hasConcept C146978453 @default.
- W3159641566 hasConcept C154945302 @default.
- W3159641566 hasConcept C1633027 @default.
- W3159641566 hasConcept C202444582 @default.
- W3159641566 hasConcept C33923547 @default.
- W3159641566 hasConcept C41008148 @default.
- W3159641566 hasConcept C9652623 @default.
- W3159641566 hasConceptScore W3159641566C108583219 @default.
- W3159641566 hasConceptScore W3159641566C111030470 @default.
- W3159641566 hasConceptScore W3159641566C112124176 @default.
- W3159641566 hasConceptScore W3159641566C119857082 @default.
- W3159641566 hasConceptScore W3159641566C127413603 @default.
- W3159641566 hasConceptScore W3159641566C13393347 @default.
- W3159641566 hasConceptScore W3159641566C139002025 @default.
- W3159641566 hasConceptScore W3159641566C146978453 @default.
- W3159641566 hasConceptScore W3159641566C154945302 @default.
- W3159641566 hasConceptScore W3159641566C1633027 @default.
- W3159641566 hasConceptScore W3159641566C202444582 @default.
- W3159641566 hasConceptScore W3159641566C33923547 @default.
- W3159641566 hasConceptScore W3159641566C41008148 @default.
- W3159641566 hasConceptScore W3159641566C9652623 @default.
- W3159641566 hasLocation W31596415661 @default.
- W3159641566 hasOpenAccess W3159641566 @default.
- W3159641566 hasPrimaryLocation W31596415661 @default.
- W3159641566 hasRelatedWork W100152577 @default.
- W3159641566 hasRelatedWork W1995366562 @default.
- W3159641566 hasRelatedWork W2082352820 @default.
- W3159641566 hasRelatedWork W2138704400 @default.
- W3159641566 hasRelatedWork W2153018945 @default.
- W3159641566 hasRelatedWork W2276941793 @default.
- W3159641566 hasRelatedWork W2590320576 @default.
- W3159641566 hasRelatedWork W2807434924 @default.
- W3159641566 hasRelatedWork W2896847007 @default.
- W3159641566 hasRelatedWork W2913152022 @default.
- W3159641566 hasRelatedWork W2953315954 @default.
- W3159641566 hasRelatedWork W2964036789 @default.
- W3159641566 hasRelatedWork W2997462131 @default.
- W3159641566 hasRelatedWork W3081811233 @default.
- W3159641566 hasRelatedWork W3092228416 @default.