Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159727499> ?p ?o ?g. }
- W3159727499 endingPage "7" @default.
- W3159727499 startingPage "7" @default.
- W3159727499 abstract "Lung cancer is the most fatal cancer in the world. Early detection, diagnosis and treatment of lung cancer is an important means to improve the survival rate of lung cancer patients. The early signs of lung cancer are small pulmonary nodules, so early detection and timely treatment of pulmonary nodules are of great significance to save the lives of lung cancer patients. With the progress of medical CT technology, a large number of image data obtained by medical CT examination are increasing, which can provide more organ and tissue information, but also bring a great burden to doctors. Therefore, the detection technology of thoracic spectrum signal is a key point. The chest cavity is a non adjustable resonator with a fixed volume and space, which is located in the chest ribs and below the vocal cords. According to the principle of resonance in physical theory, the resonance characteristics are mainly related to the size of the cavity surrounded by a certain hardness of the outer wall. Therefore, some researchers believe that the volume of the chest cavity is related to the resonance of the chest cavity. Although in recent years, some teams have combined deep learning and machine learning to improve signal feature extraction, which makes signal feature extraction easier and more efficient, most of them are still based on IQ data for signal modulation recognition. Therefore, this paper studies the visual feature extraction model based on artificial intelligence and thoracic echo spectrum, and the experimental results show the effectiveness of this method compared with the latest approaches." @default.
- W3159727499 created "2021-05-10" @default.
- W3159727499 creator A5069327989 @default.
- W3159727499 creator A5077857097 @default.
- W3159727499 date "2021-04-30" @default.
- W3159727499 modified "2023-09-26" @default.
- W3159727499 title "RETRACTED ARTICLE: AI driven feature extraction model for chest cavity spectrum signal visualization" @default.
- W3159727499 cites W1502653371 @default.
- W3159727499 cites W1963751838 @default.
- W3159727499 cites W1974144579 @default.
- W3159727499 cites W1977689202 @default.
- W3159727499 cites W1990430421 @default.
- W3159727499 cites W1991912864 @default.
- W3159727499 cites W1993092194 @default.
- W3159727499 cites W2007310460 @default.
- W3159727499 cites W2007916196 @default.
- W3159727499 cites W2023009450 @default.
- W3159727499 cites W2055534543 @default.
- W3159727499 cites W2082699837 @default.
- W3159727499 cites W2138230756 @default.
- W3159727499 cites W2151930354 @default.
- W3159727499 cites W2157469204 @default.
- W3159727499 cites W2403733059 @default.
- W3159727499 cites W2790725061 @default.
- W3159727499 cites W2960477786 @default.
- W3159727499 cites W2979088950 @default.
- W3159727499 cites W2990957765 @default.
- W3159727499 cites W3004690105 @default.
- W3159727499 cites W3008187376 @default.
- W3159727499 cites W3008400378 @default.
- W3159727499 cites W3017200700 @default.
- W3159727499 cites W3025027487 @default.
- W3159727499 cites W3025938663 @default.
- W3159727499 cites W3033819379 @default.
- W3159727499 cites W3099767690 @default.
- W3159727499 cites W4252015066 @default.
- W3159727499 cites W4300305330 @default.
- W3159727499 doi "https://doi.org/10.1007/s10772-021-09844-w" @default.
- W3159727499 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8090519" @default.
- W3159727499 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33967593" @default.
- W3159727499 hasPublicationYear "2021" @default.
- W3159727499 type Work @default.
- W3159727499 sameAs 3159727499 @default.
- W3159727499 citedByCount "1" @default.
- W3159727499 countsByYear W31597274992021 @default.
- W3159727499 crossrefType "journal-article" @default.
- W3159727499 hasAuthorship W3159727499A5069327989 @default.
- W3159727499 hasAuthorship W3159727499A5077857097 @default.
- W3159727499 hasBestOaLocation W31597274991 @default.
- W3159727499 hasConcept C126838900 @default.
- W3159727499 hasConcept C138885662 @default.
- W3159727499 hasConcept C141071460 @default.
- W3159727499 hasConcept C142724271 @default.
- W3159727499 hasConcept C153180895 @default.
- W3159727499 hasConcept C154945302 @default.
- W3159727499 hasConcept C199360897 @default.
- W3159727499 hasConcept C2776256026 @default.
- W3159727499 hasConcept C2776401178 @default.
- W3159727499 hasConcept C2777405583 @default.
- W3159727499 hasConcept C2779843651 @default.
- W3159727499 hasConcept C2779885562 @default.
- W3159727499 hasConcept C41008148 @default.
- W3159727499 hasConcept C41895202 @default.
- W3159727499 hasConcept C52622490 @default.
- W3159727499 hasConcept C71924100 @default.
- W3159727499 hasConceptScore W3159727499C126838900 @default.
- W3159727499 hasConceptScore W3159727499C138885662 @default.
- W3159727499 hasConceptScore W3159727499C141071460 @default.
- W3159727499 hasConceptScore W3159727499C142724271 @default.
- W3159727499 hasConceptScore W3159727499C153180895 @default.
- W3159727499 hasConceptScore W3159727499C154945302 @default.
- W3159727499 hasConceptScore W3159727499C199360897 @default.
- W3159727499 hasConceptScore W3159727499C2776256026 @default.
- W3159727499 hasConceptScore W3159727499C2776401178 @default.
- W3159727499 hasConceptScore W3159727499C2777405583 @default.
- W3159727499 hasConceptScore W3159727499C2779843651 @default.
- W3159727499 hasConceptScore W3159727499C2779885562 @default.
- W3159727499 hasConceptScore W3159727499C41008148 @default.
- W3159727499 hasConceptScore W3159727499C41895202 @default.
- W3159727499 hasConceptScore W3159727499C52622490 @default.
- W3159727499 hasConceptScore W3159727499C71924100 @default.
- W3159727499 hasIssue "S1" @default.
- W3159727499 hasLocation W31597274991 @default.
- W3159727499 hasLocation W31597274992 @default.
- W3159727499 hasLocation W31597274993 @default.
- W3159727499 hasOpenAccess W3159727499 @default.
- W3159727499 hasPrimaryLocation W31597274991 @default.
- W3159727499 hasRelatedWork W1964120219 @default.
- W3159727499 hasRelatedWork W2000165426 @default.
- W3159727499 hasRelatedWork W2016461833 @default.
- W3159727499 hasRelatedWork W2136054869 @default.
- W3159727499 hasRelatedWork W2144059113 @default.
- W3159727499 hasRelatedWork W2146076056 @default.
- W3159727499 hasRelatedWork W2546942002 @default.
- W3159727499 hasRelatedWork W2811390910 @default.
- W3159727499 hasRelatedWork W3003836766 @default.
- W3159727499 hasRelatedWork W3197541072 @default.
- W3159727499 hasVolume "25" @default.