Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159767510> ?p ?o ?g. }
- W3159767510 endingPage "2822" @default.
- W3159767510 startingPage "2812" @default.
- W3159767510 abstract "ConspectusThe computational modeling of realistic extended systems, relevant in, e.g., Chemistry and Biophysics, is a fundamental problem of paramount importance in contemporary research. Enzymatic catalysis and photoinduced processes in pigment–protein complexes are typical problems targeted by computer-aided approaches, to complement experiments as interpretative tools at a molecular scale. The daunting complexity of this task lies in between the opposite stringent requirements of results’ reliability for structural/dynamical properties and related intermolecular interactions, and a mandatory principle of realism in the modeling strategy. Therefore, in practice, a truly realistic computational model of a biologically relevant system can easily fail to meet the accuracy requirement, in order to balance the excessive computational cost necessary to reach the desired precision.To address such an “accuracy vs reality” dualistic requirement, mixed quantum mechanics/classical mechanics approaches within Atomistic (i.e., preserving the discrete particle configuration) Polarizable Embeddings (QM/APEs) methods have been proposed over the years. In this Account, we review recent developments in the design and application of general QM/APE methods, targeting situations where a local intrinsically quantum behavior is coupled to a large molecular system (i.e., an environment), often involving processes with different dynamical time scales, in order to avoid brute-force, unpractical quantum chemistry calculations on the complete system.In the first place, our interest is devoted to the available APEs models presently implemented in computational software, highlighting the quantum chemistry methods that can be used to treat the QM subsystem. We review the coupling strategy between the QM subsystem and the APE, which requires to examine the way the QM/MM mutual interactions are accounted for and how the polarization of the classical environment is considered with respect to (wrt) the quantum variables. Because of the need of reliable molecular and macromolecular structures, a pivotal aspect to address here is the handling of the system dynamics (i.e., gradients wrt nuclear positions are required), especially for large molecular assemblies composed by an overwhelming number of atoms, exploring many conformations on a complex energy landscape.Alongside, we highlight our views on the necessary steps to take toward more accurate general-purposes and transferable explicit embeddings. The main objective to achieve here is to design a more physically grounded multiscale approach. To do so, one should apply advanced new generation classical models to account for refined induction effects that are able to (i) improve the quality of QM/MM interaction energies; (ii) enhance transferability by avoiding the compulsory partial (or total) reparameterization of the classical model. Moreover, the extension of recent developments originating from the field of advanced classical molecular dynamics (MD) to the realm of QM/APE methods is a key direction to improve both speed and efficiency for the phase space exploration of systems of growing size and complexity.Lastly, we point out specific research topics where an advanced QM/APE dynamics can certainly shed some light. For example, we discuss chemical reactions in “harsh” environments and the case of spectroscopic theoretical modeling where the inclusion of refined environment effects is often mandatory." @default.
- W3159767510 created "2021-05-10" @default.
- W3159767510 creator A5024965288 @default.
- W3159767510 creator A5036142396 @default.
- W3159767510 creator A5068582510 @default.
- W3159767510 creator A5091404400 @default.
- W3159767510 date "2021-05-07" @default.
- W3159767510 modified "2023-09-30" @default.
- W3159767510 title "Atomistic Polarizable Embeddings: Energy, Dynamics, Spectroscopy, and Reactivity" @default.
- W3159767510 cites W1525017613 @default.
- W3159767510 cites W1976499671 @default.
- W3159767510 cites W1979605727 @default.
- W3159767510 cites W1986025575 @default.
- W3159767510 cites W1991731291 @default.
- W3159767510 cites W1991941813 @default.
- W3159767510 cites W1995176305 @default.
- W3159767510 cites W2001289126 @default.
- W3159767510 cites W2002782616 @default.
- W3159767510 cites W2004300893 @default.
- W3159767510 cites W2004303971 @default.
- W3159767510 cites W2012839646 @default.
- W3159767510 cites W2017544790 @default.
- W3159767510 cites W2017623965 @default.
- W3159767510 cites W2019887202 @default.
- W3159767510 cites W2033777798 @default.
- W3159767510 cites W2043111268 @default.
- W3159767510 cites W2045968095 @default.
- W3159767510 cites W2048946954 @default.
- W3159767510 cites W2056852536 @default.
- W3159767510 cites W2057653269 @default.
- W3159767510 cites W2065587382 @default.
- W3159767510 cites W2065655440 @default.
- W3159767510 cites W2065963893 @default.
- W3159767510 cites W2069889048 @default.
- W3159767510 cites W2071503267 @default.
- W3159767510 cites W2074256388 @default.
- W3159767510 cites W2077501220 @default.
- W3159767510 cites W2089298986 @default.
- W3159767510 cites W2110574506 @default.
- W3159767510 cites W2110872379 @default.
- W3159767510 cites W2114952418 @default.
- W3159767510 cites W2171893485 @default.
- W3159767510 cites W2294031160 @default.
- W3159767510 cites W2327627981 @default.
- W3159767510 cites W2333408473 @default.
- W3159767510 cites W2366822410 @default.
- W3159767510 cites W2470344031 @default.
- W3159767510 cites W2472550284 @default.
- W3159767510 cites W2475174324 @default.
- W3159767510 cites W2515232464 @default.
- W3159767510 cites W2521907505 @default.
- W3159767510 cites W2529393512 @default.
- W3159767510 cites W2555748168 @default.
- W3159767510 cites W2622702362 @default.
- W3159767510 cites W2735589054 @default.
- W3159767510 cites W2740652057 @default.
- W3159767510 cites W2743932045 @default.
- W3159767510 cites W2769162782 @default.
- W3159767510 cites W2791922616 @default.
- W3159767510 cites W2804934893 @default.
- W3159767510 cites W2808140278 @default.
- W3159767510 cites W2808363004 @default.
- W3159767510 cites W2923759574 @default.
- W3159767510 cites W2924775239 @default.
- W3159767510 cites W2938534641 @default.
- W3159767510 cites W2943556728 @default.
- W3159767510 cites W2944627558 @default.
- W3159767510 cites W2947610488 @default.
- W3159767510 cites W2952247423 @default.
- W3159767510 cites W2955075233 @default.
- W3159767510 cites W2965201139 @default.
- W3159767510 cites W2966401106 @default.
- W3159767510 cites W2991108008 @default.
- W3159767510 cites W3002596439 @default.
- W3159767510 cites W3011877980 @default.
- W3159767510 cites W3012305724 @default.
- W3159767510 cites W3016271224 @default.
- W3159767510 cites W3016672149 @default.
- W3159767510 cites W3021966041 @default.
- W3159767510 cites W3038271818 @default.
- W3159767510 cites W3046662785 @default.
- W3159767510 cites W3103116893 @default.
- W3159767510 cites W3118283379 @default.
- W3159767510 cites W3137530921 @default.
- W3159767510 doi "https://doi.org/10.1021/acs.accounts.0c00662" @default.
- W3159767510 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8264944" @default.
- W3159767510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33961401" @default.
- W3159767510 hasPublicationYear "2021" @default.
- W3159767510 type Work @default.
- W3159767510 sameAs 3159767510 @default.
- W3159767510 citedByCount "17" @default.
- W3159767510 countsByYear W31597675102021 @default.
- W3159767510 countsByYear W31597675102022 @default.
- W3159767510 countsByYear W31597675102023 @default.
- W3159767510 crossrefType "journal-article" @default.
- W3159767510 hasAuthorship W3159767510A5024965288 @default.
- W3159767510 hasAuthorship W3159767510A5036142396 @default.
- W3159767510 hasAuthorship W3159767510A5068582510 @default.