Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159792112> ?p ?o ?g. }
- W3159792112 abstract "Abstract Deficiencies in convection trigger functions, used in deep convection parameterizations in General Circulation Models (GCMs), have critical impacts on climate simulations. A novel convection trigger function is developed using the machine learning (ML) classification model XGBoost. The large‐scale environmental information associated with convective events is obtained from the long‐term constrained variational analysis forcing data from the Atmospheric Radiation Measurement (ARM) program at its Southern Great Plains (SGP) and Manaus (MAO) sites representing, respectively, continental mid‐latitude and tropical convection. The ML trigger is separately trained and evaluated per site, and jointly trained and evaluated at both sites as a unified trigger. The performance of the ML trigger is compared with four convective trigger functions commonly used in GCMs: dilute convective available potential energy (CAPE), undilute CAPE, dilute dynamic CAPE (dCAPE), and undilute dCAPE. The ML trigger substantially outperforms the four CAPE‐based triggers in terms of the F 1 score metric, widely used to estimate the performance of ML methods. The site‐specific ML trigger functions can achieve, respectively, 91% and 93% F 1 scores at SGP and MAO. The unified trigger also has a 91% F 1 score, with virtually no degradation from the site‐specific training, suggesting the potential of a global ML trigger function. The ML trigger alleviates a GCM deficiency regarding the overprediction of convection occurrence, offering a promising improvement to the simulation of the diurnal cycle of precipitation. Furthermore, to overcome the black box issue of the ML methods, insights derived from the ML model are discussed, which may be leveraged to improve traditional CAPE‐based triggers." @default.
- W3159792112 created "2021-05-10" @default.
- W3159792112 creator A5021252147 @default.
- W3159792112 creator A5022896184 @default.
- W3159792112 creator A5038252713 @default.
- W3159792112 creator A5067439693 @default.
- W3159792112 creator A5067533658 @default.
- W3159792112 creator A5073537439 @default.
- W3159792112 creator A5081320828 @default.
- W3159792112 date "2021-05-01" @default.
- W3159792112 modified "2023-10-05" @default.
- W3159792112 title "Improving Convection Trigger Functions in Deep Convective Parameterization Schemes Using Machine Learning" @default.
- W3159792112 cites W100848160 @default.
- W3159792112 cites W1497621784 @default.
- W3159792112 cites W1958460501 @default.
- W3159792112 cites W1965818033 @default.
- W3159792112 cites W1966614207 @default.
- W3159792112 cites W1967031773 @default.
- W3159792112 cites W1969915103 @default.
- W3159792112 cites W1971280275 @default.
- W3159792112 cites W1979448634 @default.
- W3159792112 cites W1979541009 @default.
- W3159792112 cites W1979963860 @default.
- W3159792112 cites W1980121541 @default.
- W3159792112 cites W1995277897 @default.
- W3159792112 cites W1995875735 @default.
- W3159792112 cites W2002490721 @default.
- W3159792112 cites W2009308088 @default.
- W3159792112 cites W2018921004 @default.
- W3159792112 cites W2023639956 @default.
- W3159792112 cites W2024805570 @default.
- W3159792112 cites W2036624535 @default.
- W3159792112 cites W2037079067 @default.
- W3159792112 cites W2042507029 @default.
- W3159792112 cites W2059400982 @default.
- W3159792112 cites W2107701407 @default.
- W3159792112 cites W2114535528 @default.
- W3159792112 cites W2116871777 @default.
- W3159792112 cites W2128420091 @default.
- W3159792112 cites W2134873202 @default.
- W3159792112 cites W2136852425 @default.
- W3159792112 cites W2138644576 @default.
- W3159792112 cites W2142794782 @default.
- W3159792112 cites W2146208162 @default.
- W3159792112 cites W2155113355 @default.
- W3159792112 cites W2162915715 @default.
- W3159792112 cites W2175098853 @default.
- W3159792112 cites W2192272998 @default.
- W3159792112 cites W2232647241 @default.
- W3159792112 cites W2303188915 @default.
- W3159792112 cites W2484187542 @default.
- W3159792112 cites W2539260159 @default.
- W3159792112 cites W2741400052 @default.
- W3159792112 cites W2804943168 @default.
- W3159792112 cites W2808400960 @default.
- W3159792112 cites W2885091354 @default.
- W3159792112 cites W2906113715 @default.
- W3159792112 cites W2911964244 @default.
- W3159792112 cites W2919717584 @default.
- W3159792112 cites W2921025948 @default.
- W3159792112 cites W2928248204 @default.
- W3159792112 cites W2949281876 @default.
- W3159792112 cites W2950840445 @default.
- W3159792112 cites W2954482899 @default.
- W3159792112 cites W2958015815 @default.
- W3159792112 cites W2960797162 @default.
- W3159792112 cites W2961333750 @default.
- W3159792112 cites W2964858381 @default.
- W3159792112 cites W2966860729 @default.
- W3159792112 cites W2973731563 @default.
- W3159792112 cites W2974527409 @default.
- W3159792112 cites W2998885490 @default.
- W3159792112 cites W3000098254 @default.
- W3159792112 cites W3047833863 @default.
- W3159792112 cites W3100642145 @default.
- W3159792112 cites W3102476541 @default.
- W3159792112 cites W4249191614 @default.
- W3159792112 doi "https://doi.org/10.1029/2020ms002365" @default.
- W3159792112 hasPublicationYear "2021" @default.
- W3159792112 type Work @default.
- W3159792112 sameAs 3159792112 @default.
- W3159792112 citedByCount "10" @default.
- W3159792112 countsByYear W31597921122021 @default.
- W3159792112 countsByYear W31597921122022 @default.
- W3159792112 countsByYear W31597921122023 @default.
- W3159792112 crossrefType "journal-article" @default.
- W3159792112 hasAuthorship W3159792112A5021252147 @default.
- W3159792112 hasAuthorship W3159792112A5022896184 @default.
- W3159792112 hasAuthorship W3159792112A5038252713 @default.
- W3159792112 hasAuthorship W3159792112A5067439693 @default.
- W3159792112 hasAuthorship W3159792112A5067533658 @default.
- W3159792112 hasAuthorship W3159792112A5073537439 @default.
- W3159792112 hasAuthorship W3159792112A5081320828 @default.
- W3159792112 hasBestOaLocation W31597921121 @default.
- W3159792112 hasConcept C107054158 @default.
- W3159792112 hasConcept C10899652 @default.
- W3159792112 hasConcept C121332964 @default.
- W3159792112 hasConcept C122523270 @default.
- W3159792112 hasConcept C127313418 @default.
- W3159792112 hasConcept C13280743 @default.