Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159849182> ?p ?o ?g. }
- W3159849182 endingPage "540" @default.
- W3159849182 startingPage "527" @default.
- W3159849182 abstract "Early and precise diagnosis of schizophrenia disorder (SZ) has an essential role in the quality of a patient’s life and future treatments. Structural and functional neuroimaging provides robust biomarkers for understanding the anatomical and functional changes associated with SZ. Each of the neuroimaging techniques shows only a different perspective on the functional or structural of the brain, while multi-modal fusion can reveal latent connections in the brain. In this paper, we propose an approach for the fusion of structural and functional brain data with a deep learning-based model to take advantage of data fusion and increase the accuracy of schizophrenia disorder diagnosis. The proposed method consists of an architecture of 3D convolutional neural networks (CNNs) that applied to magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) extracted features. We use 3D MRI patches, fMRI spatial independent component analysis (ICA) map, and DTI fractional anisotropy (FA) as model inputs. Our method is validated on the COBRE dataset, and an average accuracy of 99.35% is obtained. The proposed method demonstrates promising classification performance and can be applied to real data." @default.
- W3159849182 created "2021-05-10" @default.
- W3159849182 creator A5025494636 @default.
- W3159849182 creator A5046724947 @default.
- W3159849182 creator A5063416360 @default.
- W3159849182 date "2021-04-20" @default.
- W3159849182 modified "2023-10-02" @default.
- W3159849182 title "Multi-modal neuroimaging feature fusion via 3D Convolutional Neural Network architecture for schizophrenia diagnosis" @default.
- W3159849182 cites W1457602677 @default.
- W3159849182 cites W1504902003 @default.
- W3159849182 cites W1905519752 @default.
- W3159849182 cites W1958276906 @default.
- W3159849182 cites W1974874858 @default.
- W3159849182 cites W1983364832 @default.
- W3159849182 cites W2004622816 @default.
- W3159849182 cites W2006096283 @default.
- W3159849182 cites W2013247174 @default.
- W3159849182 cites W2019502123 @default.
- W3159849182 cites W2022902696 @default.
- W3159849182 cites W2036057906 @default.
- W3159849182 cites W2091532770 @default.
- W3159849182 cites W2098628179 @default.
- W3159849182 cites W2114465523 @default.
- W3159849182 cites W2116376209 @default.
- W3159849182 cites W2124533904 @default.
- W3159849182 cites W2161502085 @default.
- W3159849182 cites W2162936913 @default.
- W3159849182 cites W2223851414 @default.
- W3159849182 cites W2336687820 @default.
- W3159849182 cites W2410350689 @default.
- W3159849182 cites W2533800772 @default.
- W3159849182 cites W2533807510 @default.
- W3159849182 cites W2549743221 @default.
- W3159849182 cites W2574038793 @default.
- W3159849182 cites W2590328111 @default.
- W3159849182 cites W2618773239 @default.
- W3159849182 cites W2620688866 @default.
- W3159849182 cites W2738775733 @default.
- W3159849182 cites W2739863421 @default.
- W3159849182 cites W2751512870 @default.
- W3159849182 cites W2755156925 @default.
- W3159849182 cites W2767050687 @default.
- W3159849182 cites W2773967891 @default.
- W3159849182 cites W2783215915 @default.
- W3159849182 cites W2784132873 @default.
- W3159849182 cites W2787710388 @default.
- W3159849182 cites W2789863594 @default.
- W3159849182 cites W2790691033 @default.
- W3159849182 cites W2791282053 @default.
- W3159849182 cites W2793528521 @default.
- W3159849182 cites W2802789529 @default.
- W3159849182 cites W2809567684 @default.
- W3159849182 cites W2884781986 @default.
- W3159849182 cites W2894095668 @default.
- W3159849182 cites W2927337949 @default.
- W3159849182 cites W2945118172 @default.
- W3159849182 cites W2950023118 @default.
- W3159849182 cites W2950651700 @default.
- W3159849182 cites W2967967941 @default.
- W3159849182 cites W569000258 @default.
- W3159849182 cites W951718991 @default.
- W3159849182 doi "https://doi.org/10.3233/ida-205113" @default.
- W3159849182 hasPublicationYear "2021" @default.
- W3159849182 type Work @default.
- W3159849182 sameAs 3159849182 @default.
- W3159849182 citedByCount "5" @default.
- W3159849182 countsByYear W31598491822022 @default.
- W3159849182 countsByYear W31598491822023 @default.
- W3159849182 crossrefType "journal-article" @default.
- W3159849182 hasAuthorship W3159849182A5025494636 @default.
- W3159849182 hasAuthorship W3159849182A5046724947 @default.
- W3159849182 hasAuthorship W3159849182A5063416360 @default.
- W3159849182 hasConcept C115961682 @default.
- W3159849182 hasConcept C126838900 @default.
- W3159849182 hasConcept C138885662 @default.
- W3159849182 hasConcept C143409427 @default.
- W3159849182 hasConcept C149550507 @default.
- W3159849182 hasConcept C153180895 @default.
- W3159849182 hasConcept C154945302 @default.
- W3159849182 hasConcept C15744967 @default.
- W3159849182 hasConcept C169760540 @default.
- W3159849182 hasConcept C199360897 @default.
- W3159849182 hasConcept C2776401178 @default.
- W3159849182 hasConcept C2776412080 @default.
- W3159849182 hasConcept C2779226451 @default.
- W3159849182 hasConcept C41008148 @default.
- W3159849182 hasConcept C41895202 @default.
- W3159849182 hasConcept C52338299 @default.
- W3159849182 hasConcept C58693492 @default.
- W3159849182 hasConcept C69744172 @default.
- W3159849182 hasConcept C71924100 @default.
- W3159849182 hasConcept C81363708 @default.
- W3159849182 hasConcept C89916169 @default.
- W3159849182 hasConceptScore W3159849182C115961682 @default.
- W3159849182 hasConceptScore W3159849182C126838900 @default.
- W3159849182 hasConceptScore W3159849182C138885662 @default.
- W3159849182 hasConceptScore W3159849182C143409427 @default.
- W3159849182 hasConceptScore W3159849182C149550507 @default.