Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159851199> ?p ?o ?g. }
- W3159851199 abstract "Abstract Background Little is known about the role of artificial intelligence (AI) as a decisive technology in the clinical management of COVID-19 patients. We aimed to systematically review and critically appraise the current evidence on AI applications for COVID-19 in intensive care and emergency settings, focusing on methods, reporting standards, and clinical utility. Methods We systematically searched PubMed, Embase, Scopus, CINAHL, IEEE Xplore, and ACM Digital Library databases from inception to 1 October 2020, without language restrictions. We included peer-reviewed original studies that applied AI for COVID-19 patients, healthcare workers, or health systems in intensive care, emergency or prehospital settings. We assessed predictive modelling studies using PROBAST (prediction model risk of bias assessment tool) and a modified TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) statement for AI. We critically appraised the methodology and key findings of all other studies. Results Of fourteen eligible studies, eleven developed prognostic or diagnostic AI predictive models, all of which were assessed to be at high risk of bias. Common pitfalls included inadequate sample sizes, poor handling of missing data, failure to account for censored participants, and weak validation of models. Studies had low adherence to reporting guidelines, with particularly poor reporting on model calibration and blinding of outcome and predictor assessment. Of the remaining three studies, two evaluated the prognostic utility of deep learning-based lung segmentation software and one studied an AI-based system for resource optimisation in the ICU. These studies had similar issues in methodology, validation, and reporting. Conclusions Current AI applications for COVID-19 are not ready for deployment in acute care settings, given their limited scope and poor quality. Our findings underscore the need for improvements to facilitate safe and effective clinical adoption of AI applications, for and beyond the COVID-19 pandemic." @default.
- W3159851199 created "2021-05-10" @default.
- W3159851199 creator A5006606272 @default.
- W3159851199 creator A5030967805 @default.
- W3159851199 creator A5039367983 @default.
- W3159851199 creator A5049356493 @default.
- W3159851199 creator A5050248482 @default.
- W3159851199 creator A5072669248 @default.
- W3159851199 creator A5087685316 @default.
- W3159851199 date "2021-02-18" @default.
- W3159851199 modified "2023-10-02" @default.
- W3159851199 title "Artificial Intelligence Applications for COVID-19 in Intensive Care and Emergency Settings: A Systematic Review" @default.
- W3159851199 cites W1602160603 @default.
- W3159851199 cites W1970414061 @default.
- W3159851199 cites W1976040371 @default.
- W3159851199 cites W1977098485 @default.
- W3159851199 cites W1994682257 @default.
- W3159851199 cites W1999517440 @default.
- W3159851199 cites W2048870781 @default.
- W3159851199 cites W2067989944 @default.
- W3159851199 cites W2074932800 @default.
- W3159851199 cites W2127841934 @default.
- W3159851199 cites W2134843796 @default.
- W3159851199 cites W2145996745 @default.
- W3159851199 cites W2148659017 @default.
- W3159851199 cites W2225109326 @default.
- W3159851199 cites W2296761362 @default.
- W3159851199 cites W2548723212 @default.
- W3159851199 cites W2553734051 @default.
- W3159851199 cites W2898456625 @default.
- W3159851199 cites W2907638671 @default.
- W3159851199 cites W2919115771 @default.
- W3159851199 cites W2937186836 @default.
- W3159851199 cites W2969097171 @default.
- W3159851199 cites W2996480032 @default.
- W3159851199 cites W3008985036 @default.
- W3159851199 cites W3011403448 @default.
- W3159851199 cites W3011508296 @default.
- W3159851199 cites W3014524604 @default.
- W3159851199 cites W3014604938 @default.
- W3159851199 cites W3014734765 @default.
- W3159851199 cites W3015984951 @default.
- W3159851199 cites W3017117984 @default.
- W3159851199 cites W3018787996 @default.
- W3159851199 cites W3022063289 @default.
- W3159851199 cites W3024251435 @default.
- W3159851199 cites W3031819779 @default.
- W3159851199 cites W3031876060 @default.
- W3159851199 cites W3034655770 @default.
- W3159851199 cites W3035678942 @default.
- W3159851199 cites W3036634774 @default.
- W3159851199 cites W3037163353 @default.
- W3159851199 cites W3038925693 @default.
- W3159851199 cites W3039182478 @default.
- W3159851199 cites W3039720325 @default.
- W3159851199 cites W3042100171 @default.
- W3159851199 cites W3044899979 @default.
- W3159851199 cites W3047268902 @default.
- W3159851199 cites W3049327429 @default.
- W3159851199 cites W3070886816 @default.
- W3159851199 cites W3082442314 @default.
- W3159851199 cites W3083968240 @default.
- W3159851199 cites W3084438218 @default.
- W3159851199 cites W3087156149 @default.
- W3159851199 cites W3087359029 @default.
- W3159851199 cites W3087999014 @default.
- W3159851199 cites W3088938383 @default.
- W3159851199 cites W3136907493 @default.
- W3159851199 cites W4232185213 @default.
- W3159851199 cites W4233026002 @default.
- W3159851199 cites W4299689471 @default.
- W3159851199 doi "https://doi.org/10.1101/2021.02.15.21251727" @default.
- W3159851199 hasPublicationYear "2021" @default.
- W3159851199 type Work @default.
- W3159851199 sameAs 3159851199 @default.
- W3159851199 citedByCount "1" @default.
- W3159851199 countsByYear W31598511992022 @default.
- W3159851199 crossrefType "posted-content" @default.
- W3159851199 hasAuthorship W3159851199A5006606272 @default.
- W3159851199 hasAuthorship W3159851199A5030967805 @default.
- W3159851199 hasAuthorship W3159851199A5039367983 @default.
- W3159851199 hasAuthorship W3159851199A5049356493 @default.
- W3159851199 hasAuthorship W3159851199A5050248482 @default.
- W3159851199 hasAuthorship W3159851199A5072669248 @default.
- W3159851199 hasAuthorship W3159851199A5087685316 @default.
- W3159851199 hasBestOaLocation W31598511991 @default.
- W3159851199 hasConcept C118552586 @default.
- W3159851199 hasConcept C119857082 @default.
- W3159851199 hasConcept C141071460 @default.
- W3159851199 hasConcept C154945302 @default.
- W3159851199 hasConcept C168563851 @default.
- W3159851199 hasConcept C17744445 @default.
- W3159851199 hasConcept C177713679 @default.
- W3159851199 hasConcept C189708586 @default.
- W3159851199 hasConcept C199539241 @default.
- W3159851199 hasConcept C27415008 @default.
- W3159851199 hasConcept C2771230 @default.
- W3159851199 hasConcept C2777120189 @default.
- W3159851199 hasConcept C2779473830 @default.
- W3159851199 hasConcept C2781145037 @default.