Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159884044> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3159884044 abstract "The understanding and identification of fish hunger behaviour are non-trivial in the aquaculture industry. This thesis aims at classifying the hunger state of Lates Calcarifer via the integration of computer vision and machine learning. Prior to the classification of the hunger states, the hunger state of the fish is identified through the k-means clustering technique and it was established that the hunger state could be demarcated into either ‘Hungry’ or ‘Satiated’. Upon the identification of the hunger state, significant features that could contribute towards the accurate classification of the states are investigated. The aforesaid features are analysed by the box plot analysis and the Principal Component Analysis (PCA). The established features are COG x, COG y and the moving summation of the pixel. Different machine learning models were investigated by incorporating the identified features, i.e., Discriminant Analysis (DA), Support Vector Machine (SVM) and k-Nearest Neighbours (k-NN) and it was demonstrated that the SVM trained model is able to classify up to 99.00%, suggesting that the developed system is viable for fish farming. A supplementary analysis was further carried out to understand the circadian rhythm of the fish by evaluating the time-series features. Different window sizes ranging from 0.5 min, 1.0 min, 1.5 min and 2.0 min coupled with the mean, maximum, minimum and variance for each of the distinctive temporal window sizes are investigated. PCA and PCA varimax rotation was employed in order to identify the best features through classifying it via SVM and k-NN. It was shown that the mean and variance of all temporal sizes are significant. In addition, the efficacy of different models based on the identified secondary features, namely DA, SVM, k-NN, Decision Tree (Tree), Logistic Regression (LR), Random Forest Tree (RF) and Neural Network (NN) are evaluated. It was found that the k-NN yielded the highest classification accuracy with 96.47% from the test sets. In order to further refine the k-NN model developed, hyperparameter optimization by means of Bayesian Optimization was carried out. Through the optimization process, the best hyperparameters that could attain a classification accuracy of 97.16% are the Standardized Euclidean distance metric with a k value of one." @default.
- W3159884044 created "2021-05-10" @default.
- W3159884044 creator A5038352672 @default.
- W3159884044 creator A5068099736 @default.
- W3159884044 date "2019-11-01" @default.
- W3159884044 modified "2023-09-23" @default.
- W3159884044 title "Hunger behaviour classification of Lates Calcarifer using machine learning for automatic demand feeder through image processing" @default.
- W3159884044 cites W1529817821 @default.
- W3159884044 cites W1975355564 @default.
- W3159884044 cites W1976462512 @default.
- W3159884044 cites W1976945319 @default.
- W3159884044 cites W1984978304 @default.
- W3159884044 cites W1985783004 @default.
- W3159884044 cites W1987502276 @default.
- W3159884044 cites W1992530682 @default.
- W3159884044 cites W2009606625 @default.
- W3159884044 cites W2037805107 @default.
- W3159884044 cites W2058148593 @default.
- W3159884044 cites W2067843625 @default.
- W3159884044 cites W2070050361 @default.
- W3159884044 cites W2082203010 @default.
- W3159884044 cites W2118639819 @default.
- W3159884044 cites W2140553642 @default.
- W3159884044 cites W2166643798 @default.
- W3159884044 cites W2197423235 @default.
- W3159884044 cites W2281640469 @default.
- W3159884044 cites W2463355256 @default.
- W3159884044 cites W2561693483 @default.
- W3159884044 cites W2569062347 @default.
- W3159884044 cites W2588481349 @default.
- W3159884044 cites W2784270662 @default.
- W3159884044 cites W2789272196 @default.
- W3159884044 cites W2894686635 @default.
- W3159884044 cites W2897654901 @default.
- W3159884044 cites W607505555 @default.
- W3159884044 hasPublicationYear "2019" @default.
- W3159884044 type Work @default.
- W3159884044 sameAs 3159884044 @default.
- W3159884044 citedByCount "0" @default.
- W3159884044 crossrefType "dissertation" @default.
- W3159884044 hasAuthorship W3159884044A5038352672 @default.
- W3159884044 hasAuthorship W3159884044A5068099736 @default.
- W3159884044 hasConcept C105795698 @default.
- W3159884044 hasConcept C106906290 @default.
- W3159884044 hasConcept C116834253 @default.
- W3159884044 hasConcept C119857082 @default.
- W3159884044 hasConcept C12267149 @default.
- W3159884044 hasConcept C153180895 @default.
- W3159884044 hasConcept C154945302 @default.
- W3159884044 hasConcept C179861144 @default.
- W3159884044 hasConcept C18903297 @default.
- W3159884044 hasConcept C27438332 @default.
- W3159884044 hasConcept C33923547 @default.
- W3159884044 hasConcept C39896193 @default.
- W3159884044 hasConcept C41008148 @default.
- W3159884044 hasConcept C69738355 @default.
- W3159884044 hasConcept C86803240 @default.
- W3159884044 hasConceptScore W3159884044C105795698 @default.
- W3159884044 hasConceptScore W3159884044C106906290 @default.
- W3159884044 hasConceptScore W3159884044C116834253 @default.
- W3159884044 hasConceptScore W3159884044C119857082 @default.
- W3159884044 hasConceptScore W3159884044C12267149 @default.
- W3159884044 hasConceptScore W3159884044C153180895 @default.
- W3159884044 hasConceptScore W3159884044C154945302 @default.
- W3159884044 hasConceptScore W3159884044C179861144 @default.
- W3159884044 hasConceptScore W3159884044C18903297 @default.
- W3159884044 hasConceptScore W3159884044C27438332 @default.
- W3159884044 hasConceptScore W3159884044C33923547 @default.
- W3159884044 hasConceptScore W3159884044C39896193 @default.
- W3159884044 hasConceptScore W3159884044C41008148 @default.
- W3159884044 hasConceptScore W3159884044C69738355 @default.
- W3159884044 hasConceptScore W3159884044C86803240 @default.
- W3159884044 hasLocation W31598840441 @default.
- W3159884044 hasOpenAccess W3159884044 @default.
- W3159884044 hasPrimaryLocation W31598840441 @default.
- W3159884044 hasRelatedWork W1986690135 @default.
- W3159884044 hasRelatedWork W2023670069 @default.
- W3159884044 hasRelatedWork W2034159055 @default.
- W3159884044 hasRelatedWork W2480451102 @default.
- W3159884044 hasRelatedWork W2528847262 @default.
- W3159884044 hasRelatedWork W2752714867 @default.
- W3159884044 hasRelatedWork W2762990198 @default.
- W3159884044 hasRelatedWork W2787861918 @default.
- W3159884044 hasRelatedWork W2896774879 @default.
- W3159884044 hasRelatedWork W2898863106 @default.
- W3159884044 hasRelatedWork W2958654021 @default.
- W3159884044 hasRelatedWork W2990863063 @default.
- W3159884044 hasRelatedWork W3016133904 @default.
- W3159884044 hasRelatedWork W3044885581 @default.
- W3159884044 hasRelatedWork W3090254334 @default.
- W3159884044 hasRelatedWork W3158813703 @default.
- W3159884044 hasRelatedWork W3175687624 @default.
- W3159884044 hasRelatedWork W2187617714 @default.
- W3159884044 hasRelatedWork W2846685061 @default.
- W3159884044 hasRelatedWork W3113743601 @default.
- W3159884044 isParatext "false" @default.
- W3159884044 isRetracted "false" @default.
- W3159884044 magId "3159884044" @default.
- W3159884044 workType "dissertation" @default.