Matches in SemOpenAlex for { <https://semopenalex.org/work/W3159968191> ?p ?o ?g. }
- W3159968191 endingPage "495" @default.
- W3159968191 startingPage "483" @default.
- W3159968191 abstract "Alternative polyadenylation (APA) is a crucial step in post-transcriptional regulation. Previous bioinformatic studies have mainly focused on the recognition of polyadenylation sites (PASs) in a given genomic sequence, which is a binary classification problem. Recently, computational methods for predicting the usage level of alternative PASs in the same gene have been proposed. However, all of them cast the problem as a non-quantitative pairwise comparison task and do not take the competition among multiple PASs into account. To address this, here we propose a deep learning architecture, Deep Regulatory Code and Tools for Alternative Polyadenylation (DeeReCT-APA), to quantitatively predict the usage of all alternative PASs of a given gene. To accommodate different genes with potentially different numbers of PASs, DeeReCT-APA treats the problem as a regression task with a variable-length target. Based on a convolutional neural network-long short-term memory (CNN-LSTM) architecture, DeeReCT-APA extracts sequence features with CNN layers, uses bidirectional LSTM to explicitly model the interactions among competing PASs, and outputs percentage scores representing the usage levels of all PASs of a gene. In addition to the fact that only our method can quantitatively predict the usage of all the PASs within a gene, we show that our method consistently outperforms other existing methods on three different tasks for which they are trained: pairwise comparison task, highest usage prediction task, and ranking task. Finally, we demonstrate that our method can be used to predict the effect of genetic variations on APA patterns and sheds light on future mechanistic understanding in APA regulation. Our code and data are available at https://github.com/lzx325/DeeReCT-APA-repo." @default.
- W3159968191 created "2021-05-10" @default.
- W3159968191 creator A5009607229 @default.
- W3159968191 creator A5016730202 @default.
- W3159968191 creator A5017541508 @default.
- W3159968191 creator A5017845456 @default.
- W3159968191 creator A5018073672 @default.
- W3159968191 creator A5022542887 @default.
- W3159968191 creator A5038428126 @default.
- W3159968191 creator A5046881277 @default.
- W3159968191 creator A5053204257 @default.
- W3159968191 creator A5071123136 @default.
- W3159968191 creator A5088226132 @default.
- W3159968191 date "2022-06-01" @default.
- W3159968191 modified "2023-10-01" @default.
- W3159968191 title "DeeReCT-APA: Prediction of Alternative Polyadenylation Site Usage Through Deep Learning" @default.
- W3159968191 cites W1019830208 @default.
- W3159968191 cites W1744683414 @default.
- W3159968191 cites W1828587713 @default.
- W3159968191 cites W1901718466 @default.
- W3159968191 cites W1969412365 @default.
- W3159968191 cites W1975707733 @default.
- W3159968191 cites W1985267020 @default.
- W3159968191 cites W1996102350 @default.
- W3159968191 cites W2029706883 @default.
- W3159968191 cites W2038424676 @default.
- W3159968191 cites W2038443908 @default.
- W3159968191 cites W2060600765 @default.
- W3159968191 cites W2064675550 @default.
- W3159968191 cites W2075054758 @default.
- W3159968191 cites W2077940776 @default.
- W3159968191 cites W2099305989 @default.
- W3159968191 cites W2101852192 @default.
- W3159968191 cites W2102606027 @default.
- W3159968191 cites W2108264419 @default.
- W3159968191 cites W2127540003 @default.
- W3159968191 cites W2129429612 @default.
- W3159968191 cites W2144015117 @default.
- W3159968191 cites W2149146886 @default.
- W3159968191 cites W2165246239 @default.
- W3159968191 cites W2172208515 @default.
- W3159968191 cites W2560209580 @default.
- W3159968191 cites W2750490914 @default.
- W3159968191 cites W2766352633 @default.
- W3159968191 cites W2901463181 @default.
- W3159968191 cites W2902896987 @default.
- W3159968191 cites W2908351833 @default.
- W3159968191 cites W2908663744 @default.
- W3159968191 cites W2919115771 @default.
- W3159968191 cites W2924070408 @default.
- W3159968191 cites W2940943632 @default.
- W3159968191 cites W2948558658 @default.
- W3159968191 cites W2949671734 @default.
- W3159968191 cites W2950609999 @default.
- W3159968191 cites W2952713926 @default.
- W3159968191 cites W2953929685 @default.
- W3159968191 cites W4297168595 @default.
- W3159968191 doi "https://doi.org/10.1016/j.gpb.2020.05.004" @default.
- W3159968191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33662629" @default.
- W3159968191 hasPublicationYear "2022" @default.
- W3159968191 type Work @default.
- W3159968191 sameAs 3159968191 @default.
- W3159968191 citedByCount "15" @default.
- W3159968191 countsByYear W31599681912021 @default.
- W3159968191 countsByYear W31599681912022 @default.
- W3159968191 countsByYear W31599681912023 @default.
- W3159968191 crossrefType "journal-article" @default.
- W3159968191 hasAuthorship W3159968191A5009607229 @default.
- W3159968191 hasAuthorship W3159968191A5016730202 @default.
- W3159968191 hasAuthorship W3159968191A5017541508 @default.
- W3159968191 hasAuthorship W3159968191A5017845456 @default.
- W3159968191 hasAuthorship W3159968191A5018073672 @default.
- W3159968191 hasAuthorship W3159968191A5022542887 @default.
- W3159968191 hasAuthorship W3159968191A5038428126 @default.
- W3159968191 hasAuthorship W3159968191A5046881277 @default.
- W3159968191 hasAuthorship W3159968191A5053204257 @default.
- W3159968191 hasAuthorship W3159968191A5071123136 @default.
- W3159968191 hasAuthorship W3159968191A5088226132 @default.
- W3159968191 hasBestOaLocation W31599681911 @default.
- W3159968191 hasConcept C104317684 @default.
- W3159968191 hasConcept C108583219 @default.
- W3159968191 hasConcept C111919701 @default.
- W3159968191 hasConcept C119857082 @default.
- W3159968191 hasConcept C12267149 @default.
- W3159968191 hasConcept C142575336 @default.
- W3159968191 hasConcept C153180895 @default.
- W3159968191 hasConcept C154945302 @default.
- W3159968191 hasConcept C162324750 @default.
- W3159968191 hasConcept C184898388 @default.
- W3159968191 hasConcept C187736073 @default.
- W3159968191 hasConcept C189430467 @default.
- W3159968191 hasConcept C2780451532 @default.
- W3159968191 hasConcept C41008148 @default.
- W3159968191 hasConcept C43126263 @default.
- W3159968191 hasConcept C54355233 @default.
- W3159968191 hasConcept C66905080 @default.
- W3159968191 hasConcept C67705224 @default.
- W3159968191 hasConcept C81363708 @default.