Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160144628> ?p ?o ?g. }
- W3160144628 abstract "The potential of deep learning has been recognized in the protein structure prediction community for some time, and became indisputable after CASP13. In CASP14, deep learning has boosted the field to unanticipated levels reaching near-experimental accuracy. This success comes from advances transferred from other machine learning areas, as well as methods specifically designed to deal with protein sequences and structures, and their abstractions. Novel emerging approaches include (i) geometric learning, i.e. learning on representations such as graphs, 3D Voronoi tessellations, and point clouds; (ii) pre-trained protein language models leveraging attention; (iii) equivariant architectures preserving the symmetry of 3D space; (iv) use of large meta-genome databases; (v) combinations of protein representations; (vi) and finally truly end-to-end architectures, i.e. differentiable models starting from a sequence and returning a 3D structure. Here, we provide an overview and our opinion of the novel deep learning approaches developed in the last two years and widely used in CASP14." @default.
- W3160144628 created "2021-05-24" @default.
- W3160144628 creator A5009307435 @default.
- W3160144628 creator A5032950073 @default.
- W3160144628 creator A5072903725 @default.
- W3160144628 creator A5076453514 @default.
- W3160144628 date "2021-05-16" @default.
- W3160144628 modified "2023-09-25" @default.
- W3160144628 title "Protein sequence-to-structure learning: Is this the end(-to-end revolution)?" @default.
- W3160144628 cites W1589812083 @default.
- W3160144628 cites W1967292572 @default.
- W3160144628 cites W1968059064 @default.
- W3160144628 cites W1979762151 @default.
- W3160144628 cites W2008545402 @default.
- W3160144628 cites W2025444507 @default.
- W3160144628 cites W2048310584 @default.
- W3160144628 cites W2048822589 @default.
- W3160144628 cites W2061042699 @default.
- W3160144628 cites W2069319961 @default.
- W3160144628 cites W2079875740 @default.
- W3160144628 cites W2092572492 @default.
- W3160144628 cites W2104467962 @default.
- W3160144628 cites W2107517961 @default.
- W3160144628 cites W2114340287 @default.
- W3160144628 cites W2120836664 @default.
- W3160144628 cites W2128819145 @default.
- W3160144628 cites W2140321728 @default.
- W3160144628 cites W2140673705 @default.
- W3160144628 cites W2152508672 @default.
- W3160144628 cites W2158580600 @default.
- W3160144628 cites W2166701319 @default.
- W3160144628 cites W2196245444 @default.
- W3160144628 cites W2519887557 @default.
- W3160144628 cites W2541404351 @default.
- W3160144628 cites W2551247304 @default.
- W3160144628 cites W2594725344 @default.
- W3160144628 cites W2605650084 @default.
- W3160144628 cites W2788775653 @default.
- W3160144628 cites W2801109052 @default.
- W3160144628 cites W2905812122 @default.
- W3160144628 cites W2912932504 @default.
- W3160144628 cites W2915932155 @default.
- W3160144628 cites W2944535254 @default.
- W3160144628 cites W2949342052 @default.
- W3160144628 cites W2949891329 @default.
- W3160144628 cites W2956081200 @default.
- W3160144628 cites W2960589734 @default.
- W3160144628 cites W2963341956 @default.
- W3160144628 cites W2963711743 @default.
- W3160144628 cites W2963840672 @default.
- W3160144628 cites W2964213081 @default.
- W3160144628 cites W2964308564 @default.
- W3160144628 cites W2965351431 @default.
- W3160144628 cites W2967606876 @default.
- W3160144628 cites W2967672482 @default.
- W3160144628 cites W2969180072 @default.
- W3160144628 cites W2971227267 @default.
- W3160144628 cites W2980007617 @default.
- W3160144628 cites W2984894304 @default.
- W3160144628 cites W2987090428 @default.
- W3160144628 cites W2992752586 @default.
- W3160144628 cites W2997234557 @default.
- W3160144628 cites W3003647270 @default.
- W3160144628 cites W3005378260 @default.
- W3160144628 cites W3010387158 @default.
- W3160144628 cites W3011341255 @default.
- W3160144628 cites W3014607123 @default.
- W3160144628 cites W3021785094 @default.
- W3160144628 cites W3042198040 @default.
- W3160144628 cites W3044773187 @default.
- W3160144628 cites W3044778276 @default.
- W3160144628 cites W3048258966 @default.
- W3160144628 cites W3085928548 @default.
- W3160144628 cites W3109027947 @default.
- W3160144628 cites W3113544273 @default.
- W3160144628 cites W3114061096 @default.
- W3160144628 cites W3114990254 @default.
- W3160144628 cites W3129322014 @default.
- W3160144628 cites W3133793061 @default.
- W3160144628 cites W3134186384 @default.
- W3160144628 cites W3135175179 @default.
- W3160144628 cites W3144239152 @default.
- W3160144628 cites W3146944767 @default.
- W3160144628 cites W3155206330 @default.
- W3160144628 cites W3157286395 @default.
- W3160144628 cites W3170208818 @default.
- W3160144628 hasPublicationYear "2021" @default.
- W3160144628 type Work @default.
- W3160144628 sameAs 3160144628 @default.
- W3160144628 citedByCount "1" @default.
- W3160144628 countsByYear W31601446282021 @default.
- W3160144628 crossrefType "posted-content" @default.
- W3160144628 hasAuthorship W3160144628A5009307435 @default.
- W3160144628 hasAuthorship W3160144628A5032950073 @default.
- W3160144628 hasAuthorship W3160144628A5072903725 @default.
- W3160144628 hasAuthorship W3160144628A5076453514 @default.
- W3160144628 hasConcept C108583219 @default.
- W3160144628 hasConcept C119857082 @default.
- W3160144628 hasConcept C134306372 @default.
- W3160144628 hasConcept C154945302 @default.