Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160147991> ?p ?o ?g. }
- W3160147991 endingPage "410" @default.
- W3160147991 startingPage "319" @default.
- W3160147991 abstract "Abstract In holomorphic dynamics, complex box mappings arise as first return maps to well-chosen domains. They are a generalization of polynomial-like mapping, where the domain of the return map can have infinitely many components. They turned out to be extremely useful in tackling diverse problems. The purpose of this paper is: To illustrate some pathologies that can occur when a complex box mapping is not induced by a globally defined map and when its domain has infinitely many components, and to give conditions to avoid these issues. To show that once one has a box mapping for a rational map, these conditions can be assumed to hold in a very natural setting. Thus, we call such complex box mappings dynamically natural . Having such box mappings is the first step in tackling many problems in one-dimensional dynamics. Many results in holomorphic dynamics rely on an interplay between combinatorial and analytic techniques. In this setting, some of these tools are: the Enhanced Nest (a nest of puzzle pieces around critical points) from Kozlovski, Shen, van Strien (Ann Math 165:749–841, 2007), referred to below as KSS; the Covering Lemma (which controls the moduli of pullbacks of annuli) from Kahn and Lyubich (Ann Math 169(2):561–593, 2009); the QC-Criterion and the Spreading Principle from KSS. The purpose of this paper is to make these tools more accessible so that they can be used as a ‘black box’, so one does not have to redo the proofs in new settings. To give an intuitive, but also rather detailed, outline of the proof from KSS and Kozlovski and van Strien (Proc Lond Math Soc (3) 99:275–296, 2009) of the following results for non-renormalizable dynamically natural complex box mappings: puzzle pieces shrink to points, (under some assumptions) topologically conjugate non-renormalizable polynomials and box mappings are quasiconformally conjugate. We prove the fundamental ergodic properties for dynamically natural box mappings. This leads to some necessary conditions for when such a box mapping supports a measurable invariant line field on its filled Julia set. These mappings are the analogues of Lattès maps in this setting. We prove a version of Mañé’s Theorem for complex box mappings concerning expansion along orbits of points that avoid a neighborhood of the set of critical points." @default.
- W3160147991 created "2021-05-24" @default.
- W3160147991 creator A5020711652 @default.
- W3160147991 creator A5028849443 @default.
- W3160147991 creator A5060866700 @default.
- W3160147991 creator A5079485718 @default.
- W3160147991 date "2022-05-27" @default.
- W3160147991 modified "2023-10-14" @default.
- W3160147991 title "The Dynamics of Complex Box Mappings" @default.
- W3160147991 cites W132845994 @default.
- W3160147991 cites W1483826223 @default.
- W3160147991 cites W1495310387 @default.
- W3160147991 cites W1496942259 @default.
- W3160147991 cites W1508920883 @default.
- W3160147991 cites W1513168225 @default.
- W3160147991 cites W1598001414 @default.
- W3160147991 cites W1608712405 @default.
- W3160147991 cites W179744317 @default.
- W3160147991 cites W1964686430 @default.
- W3160147991 cites W1968083197 @default.
- W3160147991 cites W1969193761 @default.
- W3160147991 cites W1981010731 @default.
- W3160147991 cites W1984930436 @default.
- W3160147991 cites W1991942070 @default.
- W3160147991 cites W1994621059 @default.
- W3160147991 cites W2003410587 @default.
- W3160147991 cites W2003788739 @default.
- W3160147991 cites W2004816156 @default.
- W3160147991 cites W2004978972 @default.
- W3160147991 cites W2007114112 @default.
- W3160147991 cites W2007561358 @default.
- W3160147991 cites W2009131483 @default.
- W3160147991 cites W2009598767 @default.
- W3160147991 cites W2012482386 @default.
- W3160147991 cites W2013223846 @default.
- W3160147991 cites W2023523124 @default.
- W3160147991 cites W2030712873 @default.
- W3160147991 cites W2032467415 @default.
- W3160147991 cites W2036054716 @default.
- W3160147991 cites W2041274745 @default.
- W3160147991 cites W2043389026 @default.
- W3160147991 cites W2045958730 @default.
- W3160147991 cites W2047813281 @default.
- W3160147991 cites W2053159856 @default.
- W3160147991 cites W2054288672 @default.
- W3160147991 cites W2054816224 @default.
- W3160147991 cites W2061329908 @default.
- W3160147991 cites W2063941378 @default.
- W3160147991 cites W2064375896 @default.
- W3160147991 cites W2070904005 @default.
- W3160147991 cites W2074707988 @default.
- W3160147991 cites W2076312407 @default.
- W3160147991 cites W2078116828 @default.
- W3160147991 cites W2082987679 @default.
- W3160147991 cites W2089146231 @default.
- W3160147991 cites W2093253403 @default.
- W3160147991 cites W2103307614 @default.
- W3160147991 cites W2109793420 @default.
- W3160147991 cites W2131891068 @default.
- W3160147991 cites W2141382014 @default.
- W3160147991 cites W2143809241 @default.
- W3160147991 cites W2143986991 @default.
- W3160147991 cites W2146365798 @default.
- W3160147991 cites W2150399218 @default.
- W3160147991 cites W2164134878 @default.
- W3160147991 cites W2327733613 @default.
- W3160147991 cites W2488508491 @default.
- W3160147991 cites W2743806489 @default.
- W3160147991 cites W2914951092 @default.
- W3160147991 cites W2963276793 @default.
- W3160147991 cites W2963724770 @default.
- W3160147991 cites W2964028916 @default.
- W3160147991 cites W2964148142 @default.
- W3160147991 cites W3095400800 @default.
- W3160147991 cites W3098237782 @default.
- W3160147991 cites W3101178276 @default.
- W3160147991 cites W3102602564 @default.
- W3160147991 cites W3103891566 @default.
- W3160147991 cites W3104217436 @default.
- W3160147991 cites W3112522703 @default.
- W3160147991 cites W3172325253 @default.
- W3160147991 cites W4206137692 @default.
- W3160147991 cites W4213019662 @default.
- W3160147991 cites W4213116728 @default.
- W3160147991 cites W4232709242 @default.
- W3160147991 cites W4235685874 @default.
- W3160147991 cites W4244515083 @default.
- W3160147991 cites W4245357088 @default.
- W3160147991 cites W4289083372 @default.
- W3160147991 doi "https://doi.org/10.1007/s40598-022-00200-7" @default.
- W3160147991 hasPublicationYear "2022" @default.
- W3160147991 type Work @default.
- W3160147991 sameAs 3160147991 @default.
- W3160147991 citedByCount "2" @default.
- W3160147991 countsByYear W31601479912021 @default.
- W3160147991 countsByYear W31601479912022 @default.
- W3160147991 crossrefType "journal-article" @default.
- W3160147991 hasAuthorship W3160147991A5020711652 @default.