Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160209675> ?p ?o ?g. }
- W3160209675 endingPage "13670" @default.
- W3160209675 startingPage "13654" @default.
- W3160209675 abstract "Acid fracturing is one of the most effective techniques for improving the productivity of naturally fractured carbonate reservoirs. Natural fractures (NFs) significantly affect the design and performance of acid fracturing treatments. However, few models have considered the impact of NFs on acid fracturing treatments. This study presents a simple and computationally efficient model for evaluating acid fracturing efficiency in naturally fractured reservoirs using artificial intelligence-based techniques. In this work, the productivity enhancement due to acid fracturing is determined by considering the complex interactions between natural and hydraulic fractures. Several artificial intelligence (AI) techniques were examined to develop a reliable predictive model. An artificial neural network (ANN), a fuzzy logic (FL) system, and a support vector machine (SVM) were used. The developed model predicts the productivity improvement based on reservoir permeability and geomechanical properties (e.g., Young’s modulus and closure stress), natural fracture properties, and design conditions (i.e., acid injection rate, acid concentration, treatment volume, and acid types). Also, several evaluation indices were used to evaluate the model reliability including the correlation coefficient, average absolute percentage error, and average absolute deviation. The AI model was trained and tested using more than 3100 scenarios for different reservoir and treatment conditions. The developed ANN model can predict the productivity improvement with a 3.13% average absolute error and a 0.98 correlation coefficient, for the testing (unseen) data sets. Moreover, an empirical equation was extracted from the optimized ANN model to provide a direct estimation for productivity improvement based on the reservoir and treatment design parameters. The extracted equation was evaluated using validation data where a 4.54% average absolute error and a 0.99 correlation coefficient were achieved. The obtained results and degree of accuracy show the high reliability of the proposed model. Compared to the conventional simulators, the developed model reduces the time required for predicting the productivity improvement by more than 60-fold; therefore, it can be used on the fly to select the best design scenarios for naturally fractured formations." @default.
- W3160209675 created "2021-05-24" @default.
- W3160209675 creator A5002974432 @default.
- W3160209675 creator A5071309872 @default.
- W3160209675 creator A5075429508 @default.
- W3160209675 date "2021-05-18" @default.
- W3160209675 modified "2023-09-27" @default.
- W3160209675 title "An Artificial Intelligence-Based Model for Performance Prediction of Acid Fracturing in Naturally Fractured Reservoirs" @default.
- W3160209675 cites W1967894751 @default.
- W3160209675 cites W1969369793 @default.
- W3160209675 cites W2002016471 @default.
- W3160209675 cites W2004601679 @default.
- W3160209675 cites W2029121530 @default.
- W3160209675 cites W2038550955 @default.
- W3160209675 cites W2042674693 @default.
- W3160209675 cites W2053938170 @default.
- W3160209675 cites W2064410454 @default.
- W3160209675 cites W2069792938 @default.
- W3160209675 cites W2072971072 @default.
- W3160209675 cites W2082370415 @default.
- W3160209675 cites W2101927907 @default.
- W3160209675 cites W2131559875 @default.
- W3160209675 cites W2592024144 @default.
- W3160209675 cites W2592479876 @default.
- W3160209675 cites W2593493687 @default.
- W3160209675 cites W2793169732 @default.
- W3160209675 cites W2897167240 @default.
- W3160209675 cites W2899490418 @default.
- W3160209675 cites W2903269036 @default.
- W3160209675 cites W2937448533 @default.
- W3160209675 cites W2950884568 @default.
- W3160209675 cites W2972520123 @default.
- W3160209675 cites W2979315628 @default.
- W3160209675 cites W2983319910 @default.
- W3160209675 cites W2993482125 @default.
- W3160209675 cites W3011245338 @default.
- W3160209675 cites W3011853087 @default.
- W3160209675 cites W3023652596 @default.
- W3160209675 cites W3026483341 @default.
- W3160209675 cites W3037988992 @default.
- W3160209675 cites W3039780204 @default.
- W3160209675 cites W3042245585 @default.
- W3160209675 cites W4236417541 @default.
- W3160209675 cites W4238652496 @default.
- W3160209675 doi "https://doi.org/10.1021/acsomega.1c00809" @default.
- W3160209675 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8173587" @default.
- W3160209675 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34095659" @default.
- W3160209675 hasPublicationYear "2021" @default.
- W3160209675 type Work @default.
- W3160209675 sameAs 3160209675 @default.
- W3160209675 citedByCount "13" @default.
- W3160209675 countsByYear W31602096752021 @default.
- W3160209675 countsByYear W31602096752022 @default.
- W3160209675 countsByYear W31602096752023 @default.
- W3160209675 crossrefType "journal-article" @default.
- W3160209675 hasAuthorship W3160209675A5002974432 @default.
- W3160209675 hasAuthorship W3160209675A5071309872 @default.
- W3160209675 hasAuthorship W3160209675A5075429508 @default.
- W3160209675 hasBestOaLocation W31602096753 @default.
- W3160209675 hasConcept C11413529 @default.
- W3160209675 hasConcept C119857082 @default.
- W3160209675 hasConcept C120882062 @default.
- W3160209675 hasConcept C122383733 @default.
- W3160209675 hasConcept C12267149 @default.
- W3160209675 hasConcept C127413603 @default.
- W3160209675 hasConcept C128990827 @default.
- W3160209675 hasConcept C150217764 @default.
- W3160209675 hasConcept C154945302 @default.
- W3160209675 hasConcept C185592680 @default.
- W3160209675 hasConcept C2779096232 @default.
- W3160209675 hasConcept C2780092901 @default.
- W3160209675 hasConcept C33923547 @default.
- W3160209675 hasConcept C41008148 @default.
- W3160209675 hasConcept C41625074 @default.
- W3160209675 hasConcept C50644808 @default.
- W3160209675 hasConcept C55493867 @default.
- W3160209675 hasConcept C78762247 @default.
- W3160209675 hasConceptScore W3160209675C11413529 @default.
- W3160209675 hasConceptScore W3160209675C119857082 @default.
- W3160209675 hasConceptScore W3160209675C120882062 @default.
- W3160209675 hasConceptScore W3160209675C122383733 @default.
- W3160209675 hasConceptScore W3160209675C12267149 @default.
- W3160209675 hasConceptScore W3160209675C127413603 @default.
- W3160209675 hasConceptScore W3160209675C128990827 @default.
- W3160209675 hasConceptScore W3160209675C150217764 @default.
- W3160209675 hasConceptScore W3160209675C154945302 @default.
- W3160209675 hasConceptScore W3160209675C185592680 @default.
- W3160209675 hasConceptScore W3160209675C2779096232 @default.
- W3160209675 hasConceptScore W3160209675C2780092901 @default.
- W3160209675 hasConceptScore W3160209675C33923547 @default.
- W3160209675 hasConceptScore W3160209675C41008148 @default.
- W3160209675 hasConceptScore W3160209675C41625074 @default.
- W3160209675 hasConceptScore W3160209675C50644808 @default.
- W3160209675 hasConceptScore W3160209675C55493867 @default.
- W3160209675 hasConceptScore W3160209675C78762247 @default.
- W3160209675 hasIssue "21" @default.
- W3160209675 hasLocation W31602096751 @default.
- W3160209675 hasLocation W31602096752 @default.