Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160258528> ?p ?o ?g. }
- W3160258528 endingPage "26" @default.
- W3160258528 startingPage "1" @default.
- W3160258528 abstract "Physics-based models are often used to study engineering and environmental systems. The ability to model these systems is the key to achieving our future environmental sustainability and improving the quality of human life. This article focuses on simulating lake water temperature, which is critical for understanding the impact of changing climate on aquatic ecosystems and assisting in aquatic resource management decisions. General Lake Model (GLM) is a state-of-the-art physics-based model used for addressing such problems. However, like other physics-based models used for studying scientific and engineering systems, it has several well-known limitations due to simplified representations of the physical processes being modeled or challenges in selecting appropriate parameters. While state-of-the-art machine learning models can sometimes outperform physics-based models given ample amount of training data, they can produce results that are physically inconsistent. This article proposes a physics-guided recurrent neural network model (PGRNN) that combines RNNs and physics-based models to leverage their complementary strengths and improves the modeling of physical processes. Specifically, we show that a PGRNN can improve prediction accuracy over that of physics-based models (by over 20% even with very little training data), while generating outputs consistent with physical laws. An important aspect of our PGRNN approach lies in its ability to incorporate the knowledge encoded in physics-based models. This allows training the PGRNN model using very few true observed data while also ensuring high prediction accuracy. Although we present and evaluate this methodology in the context of modeling the dynamics of temperature in lakes, it is applicable more widely to a range of scientific and engineering disciplines where physics-based (also known as mechanistic) models are used." @default.
- W3160258528 created "2021-05-24" @default.
- W3160258528 creator A5001009200 @default.
- W3160258528 creator A5001445783 @default.
- W3160258528 creator A5005617262 @default.
- W3160258528 creator A5022878003 @default.
- W3160258528 creator A5044490476 @default.
- W3160258528 creator A5081622450 @default.
- W3160258528 creator A5089436894 @default.
- W3160258528 date "2021-05-18" @default.
- W3160258528 modified "2023-10-10" @default.
- W3160258528 title "Physics-Guided Machine Learning for Scientific Discovery: An Application in Simulating Lake Temperature Profiles" @default.
- W3160258528 cites W1019670007 @default.
- W3160258528 cites W1991691903 @default.
- W3160258528 cites W2041375357 @default.
- W3160258528 cites W2067624665 @default.
- W3160258528 cites W2078237791 @default.
- W3160258528 cites W2079971020 @default.
- W3160258528 cites W2083278075 @default.
- W3160258528 cites W2088851796 @default.
- W3160258528 cites W2093828424 @default.
- W3160258528 cites W2107878631 @default.
- W3160258528 cites W2149350706 @default.
- W3160258528 cites W2239232218 @default.
- W3160258528 cites W2507348356 @default.
- W3160258528 cites W2525748878 @default.
- W3160258528 cites W2582187633 @default.
- W3160258528 cites W2584388207 @default.
- W3160258528 cites W2591899958 @default.
- W3160258528 cites W2726567683 @default.
- W3160258528 cites W2734256217 @default.
- W3160258528 cites W2793724872 @default.
- W3160258528 cites W2794371820 @default.
- W3160258528 cites W2797355244 @default.
- W3160258528 cites W2913159621 @default.
- W3160258528 cites W2982585804 @default.
- W3160258528 cites W88868203 @default.
- W3160258528 doi "https://doi.org/10.1145/3447814" @default.
- W3160258528 hasPublicationYear "2021" @default.
- W3160258528 type Work @default.
- W3160258528 sameAs 3160258528 @default.
- W3160258528 citedByCount "82" @default.
- W3160258528 countsByYear W31602585282020 @default.
- W3160258528 countsByYear W31602585282021 @default.
- W3160258528 countsByYear W31602585282022 @default.
- W3160258528 countsByYear W31602585282023 @default.
- W3160258528 crossrefType "journal-article" @default.
- W3160258528 hasAuthorship W3160258528A5001009200 @default.
- W3160258528 hasAuthorship W3160258528A5001445783 @default.
- W3160258528 hasAuthorship W3160258528A5005617262 @default.
- W3160258528 hasAuthorship W3160258528A5022878003 @default.
- W3160258528 hasAuthorship W3160258528A5044490476 @default.
- W3160258528 hasAuthorship W3160258528A5081622450 @default.
- W3160258528 hasAuthorship W3160258528A5089436894 @default.
- W3160258528 hasBestOaLocation W31602585281 @default.
- W3160258528 hasConcept C116672817 @default.
- W3160258528 hasConcept C119857082 @default.
- W3160258528 hasConcept C121332964 @default.
- W3160258528 hasConcept C127413603 @default.
- W3160258528 hasConcept C151730666 @default.
- W3160258528 hasConcept C153083717 @default.
- W3160258528 hasConcept C154945302 @default.
- W3160258528 hasConcept C206345919 @default.
- W3160258528 hasConcept C2522767166 @default.
- W3160258528 hasConcept C2779343474 @default.
- W3160258528 hasConcept C31258907 @default.
- W3160258528 hasConcept C41008148 @default.
- W3160258528 hasConcept C50644808 @default.
- W3160258528 hasConcept C539667460 @default.
- W3160258528 hasConcept C62520636 @default.
- W3160258528 hasConcept C86803240 @default.
- W3160258528 hasConceptScore W3160258528C116672817 @default.
- W3160258528 hasConceptScore W3160258528C119857082 @default.
- W3160258528 hasConceptScore W3160258528C121332964 @default.
- W3160258528 hasConceptScore W3160258528C127413603 @default.
- W3160258528 hasConceptScore W3160258528C151730666 @default.
- W3160258528 hasConceptScore W3160258528C153083717 @default.
- W3160258528 hasConceptScore W3160258528C154945302 @default.
- W3160258528 hasConceptScore W3160258528C206345919 @default.
- W3160258528 hasConceptScore W3160258528C2522767166 @default.
- W3160258528 hasConceptScore W3160258528C2779343474 @default.
- W3160258528 hasConceptScore W3160258528C31258907 @default.
- W3160258528 hasConceptScore W3160258528C41008148 @default.
- W3160258528 hasConceptScore W3160258528C50644808 @default.
- W3160258528 hasConceptScore W3160258528C539667460 @default.
- W3160258528 hasConceptScore W3160258528C62520636 @default.
- W3160258528 hasConceptScore W3160258528C86803240 @default.
- W3160258528 hasIssue "3" @default.
- W3160258528 hasLocation W31602585281 @default.
- W3160258528 hasLocation W31602585282 @default.
- W3160258528 hasOpenAccess W3160258528 @default.
- W3160258528 hasPrimaryLocation W31602585281 @default.
- W3160258528 hasRelatedWork W2158269427 @default.
- W3160258528 hasRelatedWork W2275805942 @default.
- W3160258528 hasRelatedWork W2355048207 @default.
- W3160258528 hasRelatedWork W2750422482 @default.
- W3160258528 hasRelatedWork W2787993192 @default.
- W3160258528 hasRelatedWork W2847365777 @default.