Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160301947> ?p ?o ?g. }
- W3160301947 endingPage "1206" @default.
- W3160301947 startingPage "1194" @default.
- W3160301947 abstract "Data collected from the X-ray fluorescence-computed tomography (XFCT) is frequently reconstructed with algorithms proposed for X-ray transmission tomography. As these algorithms do not model the self-absorption effect inherent to XFCT, their capacity on accurately reconstructing the elemental distribution is limited. Although algorithms specialized for XFCT reconstruction have been developed, the majority of them impose strict requirements on the samples and the acquisition setup. To relax these prerequisites, a deep convolutional neural network is proposed to correct the self-absorption effect in the sinogram domain. Through quantitative evaluation, we conclude that the well-trained neural network can correct fluorescence sinograms affected by the self-absorption effect. Furthermore, we demonstrate that such corrections enable conventional algorithms to reconstruct the elemental distribution with high fidelity. As the only input required by the proposed neural network is the fluorescence sinogram, it is fully automatic and is applicable to different scan setups and samples." @default.
- W3160301947 created "2021-05-24" @default.
- W3160301947 creator A5005318289 @default.
- W3160301947 creator A5006901075 @default.
- W3160301947 creator A5029226890 @default.
- W3160301947 creator A5040156949 @default.
- W3160301947 creator A5052094214 @default.
- W3160301947 creator A5064890747 @default.
- W3160301947 date "2021-06-01" @default.
- W3160301947 modified "2023-09-23" @default.
- W3160301947 title "Self-Absorption Correction in X-Ray Fluorescence- Computed Tomography With Deep Convolutional Neural Network" @default.
- W3160301947 cites W1585475853 @default.
- W3160301947 cites W1965427675 @default.
- W3160301947 cites W1988115241 @default.
- W3160301947 cites W2006593246 @default.
- W3160301947 cites W2028798087 @default.
- W3160301947 cites W2042580235 @default.
- W3160301947 cites W2043339911 @default.
- W3160301947 cites W2055807446 @default.
- W3160301947 cites W2078076030 @default.
- W3160301947 cites W2082952851 @default.
- W3160301947 cites W2126052028 @default.
- W3160301947 cites W2127027235 @default.
- W3160301947 cites W2133665775 @default.
- W3160301947 cites W2135534708 @default.
- W3160301947 cites W2148504016 @default.
- W3160301947 cites W2154129661 @default.
- W3160301947 cites W2331128040 @default.
- W3160301947 cites W2570202822 @default.
- W3160301947 cites W2615929045 @default.
- W3160301947 cites W2617128058 @default.
- W3160301947 cites W2620215397 @default.
- W3160301947 cites W2753137212 @default.
- W3160301947 cites W2754956769 @default.
- W3160301947 cites W2800924046 @default.
- W3160301947 cites W2802431269 @default.
- W3160301947 cites W2809226111 @default.
- W3160301947 cites W2851782922 @default.
- W3160301947 cites W2930377639 @default.
- W3160301947 cites W2963385325 @default.
- W3160301947 cites W2963470893 @default.
- W3160301947 cites W2970437588 @default.
- W3160301947 cites W2992581461 @default.
- W3160301947 cites W3103586216 @default.
- W3160301947 cites W3104900379 @default.
- W3160301947 cites W3105751747 @default.
- W3160301947 cites W4255787118 @default.
- W3160301947 doi "https://doi.org/10.1109/tns.2021.3079629" @default.
- W3160301947 hasPublicationYear "2021" @default.
- W3160301947 type Work @default.
- W3160301947 sameAs 3160301947 @default.
- W3160301947 citedByCount "3" @default.
- W3160301947 countsByYear W31603019472022 @default.
- W3160301947 countsByYear W31603019472023 @default.
- W3160301947 crossrefType "journal-article" @default.
- W3160301947 hasAuthorship W3160301947A5005318289 @default.
- W3160301947 hasAuthorship W3160301947A5006901075 @default.
- W3160301947 hasAuthorship W3160301947A5029226890 @default.
- W3160301947 hasAuthorship W3160301947A5040156949 @default.
- W3160301947 hasAuthorship W3160301947A5052094214 @default.
- W3160301947 hasAuthorship W3160301947A5064890747 @default.
- W3160301947 hasConcept C11413529 @default.
- W3160301947 hasConcept C120665830 @default.
- W3160301947 hasConcept C121332964 @default.
- W3160301947 hasConcept C125287762 @default.
- W3160301947 hasConcept C141379421 @default.
- W3160301947 hasConcept C154945302 @default.
- W3160301947 hasConcept C163716698 @default.
- W3160301947 hasConcept C41008148 @default.
- W3160301947 hasConcept C50644808 @default.
- W3160301947 hasConcept C761482 @default.
- W3160301947 hasConcept C76155785 @default.
- W3160301947 hasConcept C81363708 @default.
- W3160301947 hasConcept C91881484 @default.
- W3160301947 hasConceptScore W3160301947C11413529 @default.
- W3160301947 hasConceptScore W3160301947C120665830 @default.
- W3160301947 hasConceptScore W3160301947C121332964 @default.
- W3160301947 hasConceptScore W3160301947C125287762 @default.
- W3160301947 hasConceptScore W3160301947C141379421 @default.
- W3160301947 hasConceptScore W3160301947C154945302 @default.
- W3160301947 hasConceptScore W3160301947C163716698 @default.
- W3160301947 hasConceptScore W3160301947C41008148 @default.
- W3160301947 hasConceptScore W3160301947C50644808 @default.
- W3160301947 hasConceptScore W3160301947C761482 @default.
- W3160301947 hasConceptScore W3160301947C76155785 @default.
- W3160301947 hasConceptScore W3160301947C81363708 @default.
- W3160301947 hasConceptScore W3160301947C91881484 @default.
- W3160301947 hasFunder F4320321730 @default.
- W3160301947 hasFunder F4320335227 @default.
- W3160301947 hasIssue "6" @default.
- W3160301947 hasLocation W31603019471 @default.
- W3160301947 hasOpenAccess W3160301947 @default.
- W3160301947 hasPrimaryLocation W31603019471 @default.
- W3160301947 hasRelatedWork W1927757206 @default.
- W3160301947 hasRelatedWork W1982391984 @default.
- W3160301947 hasRelatedWork W2016588233 @default.
- W3160301947 hasRelatedWork W2028327174 @default.
- W3160301947 hasRelatedWork W2040119889 @default.