Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160305890> ?p ?o ?g. }
- W3160305890 endingPage "103983" @default.
- W3160305890 startingPage "103983" @default.
- W3160305890 abstract "Estuarine carbonate chemistry predicts that thermodynamic equilibration during the mixing of freshwater with seawater will generate a carbon dioxide (CO2) sink in the case of warm and poorly buffered tropical rivers. The São Francisco River estuary has historically become oligotrophic after the construction of a series of hydroelectric dams in its watershed, where organic matter and nutrients are retained. During two cruises in late winter (Aug. 2014) and early summer (Nov. 2015), dissolved inorganic carbon (DIC) and total alkalinity (TA) were found to increase linearly with salinity in the main estuarine channel, where water mixing required half a day, and showed nearly conservative behaviour. In the main channel, the water partial pressure of CO2 (pCO2) recorded at a 1-min frequency followed an asymmetric bell-shaped trend versus salinity, similar to the curve predicted by the thermodynamic conservative mixing of freshwater DIC and TA with seawater DIC and TA. The low (0–3) salinity region was always a source of atmospheric CO2, where despite low chlorophyll concentrations, a pCO2 diurnal change of approximately 60 ppmv suggested the occurrence of photosynthesis in summer. At salinities above 3, undersaturated pCO2 values (down to 225 ppmv in winter and neap tides) and invasion of atmospheric CO2 of 0.38–1.70 mmol m−1 h−1 occurred because of the predominating thermodynamics during estuarine mixing. In winter and neap tides, the higher river discharge, intense estuarine mixing, lower temperatures and limited tidal pumping resulted in observed pCO2 differences from the theoretical conservative pCO2 by less than 3 ppmv at salinities >3. Conversely, in summer and spring tides, the recorded pCO2 values were on average + 43 ± 35 ppmv above the conservative mixing curve, when tidal pumping, CO2 invasion and surface heating were more significant in the mixing zone but not sufficient to offset the thermodynamic uptake of atmospheric CO2. By combining carbonate chemistry with estuarine mixing modelling and gas exchange calculations, we estimate that heating contributed to approximately 15% and gas exchange contributed to approximately 10% of the positive pCO2 deviation from conservative mixing during summer. The remaining 75% of the deviation reached its maximum at ebb tides and within salinity ranges consistent with the occurrence of tidal pumping from marches and mangrove soils. Indeed, in the mangrove channel, water was supersaturated, with pCO2 values of 976 ± 314 ppmv, while in the main channel, the highest positive pCO2 deviations from conservative mixing (up to +100 ppmv for several hours) occurred at ebb tides. An important finding was that in São Francisco, the thermodynamic and biological processes compete with each other for CO2 fluxes both at low salinities where evasion and autotrophy occur and at high salinities where invasion, heterotrophy and tidal pumping occur. Our study suggests that carbonate thermodynamics during mixing is a key process that has been overlooked in estuarine studies, although they can generate important air-water CO2 exchange and significantly contribute to the carbon budget of estuaries and river plumes." @default.
- W3160305890 created "2021-05-24" @default.
- W3160305890 creator A5005626583 @default.
- W3160305890 creator A5010973508 @default.
- W3160305890 creator A5021295751 @default.
- W3160305890 creator A5043466330 @default.
- W3160305890 creator A5056417853 @default.
- W3160305890 creator A5062438840 @default.
- W3160305890 creator A5091296006 @default.
- W3160305890 date "2021-06-01" @default.
- W3160305890 modified "2023-10-18" @default.
- W3160305890 title "Thermodynamic uptake of atmospheric CO2 in the oligotrophic and semiarid São Francisco estuary (NE Brazil)" @default.
- W3160305890 cites W1969184914 @default.
- W3160305890 cites W1980702780 @default.
- W3160305890 cites W1988305373 @default.
- W3160305890 cites W2000238409 @default.
- W3160305890 cites W2014952111 @default.
- W3160305890 cites W2015345123 @default.
- W3160305890 cites W2018516735 @default.
- W3160305890 cites W2023633170 @default.
- W3160305890 cites W2030604405 @default.
- W3160305890 cites W2041151913 @default.
- W3160305890 cites W2042898341 @default.
- W3160305890 cites W2065250633 @default.
- W3160305890 cites W2069996068 @default.
- W3160305890 cites W2094120774 @default.
- W3160305890 cites W2094300388 @default.
- W3160305890 cites W2097947998 @default.
- W3160305890 cites W2099562949 @default.
- W3160305890 cites W2099572029 @default.
- W3160305890 cites W2102477795 @default.
- W3160305890 cites W2106980413 @default.
- W3160305890 cites W2120393286 @default.
- W3160305890 cites W2125776675 @default.
- W3160305890 cites W2127771872 @default.
- W3160305890 cites W2130464518 @default.
- W3160305890 cites W2134127617 @default.
- W3160305890 cites W2139080843 @default.
- W3160305890 cites W2141625152 @default.
- W3160305890 cites W2146096736 @default.
- W3160305890 cites W2150101427 @default.
- W3160305890 cites W2153751536 @default.
- W3160305890 cites W2153828904 @default.
- W3160305890 cites W2157778454 @default.
- W3160305890 cites W2158118479 @default.
- W3160305890 cites W2162032177 @default.
- W3160305890 cites W2162306868 @default.
- W3160305890 cites W2162741635 @default.
- W3160305890 cites W2171884408 @default.
- W3160305890 cites W2175267031 @default.
- W3160305890 cites W2538677258 @default.
- W3160305890 cites W2573723292 @default.
- W3160305890 cites W2749958105 @default.
- W3160305890 cites W2752317751 @default.
- W3160305890 cites W2792511589 @default.
- W3160305890 cites W2801497915 @default.
- W3160305890 cites W2883364586 @default.
- W3160305890 cites W2965044258 @default.
- W3160305890 cites W2998710374 @default.
- W3160305890 cites W3080478234 @default.
- W3160305890 cites W3111677632 @default.
- W3160305890 cites W3136286328 @default.
- W3160305890 doi "https://doi.org/10.1016/j.marchem.2021.103983" @default.
- W3160305890 hasPublicationYear "2021" @default.
- W3160305890 type Work @default.
- W3160305890 sameAs 3160305890 @default.
- W3160305890 citedByCount "8" @default.
- W3160305890 countsByYear W31603058902021 @default.
- W3160305890 countsByYear W31603058902022 @default.
- W3160305890 countsByYear W31603058902023 @default.
- W3160305890 crossrefType "journal-article" @default.
- W3160305890 hasAuthorship W3160305890A5005626583 @default.
- W3160305890 hasAuthorship W3160305890A5010973508 @default.
- W3160305890 hasAuthorship W3160305890A5021295751 @default.
- W3160305890 hasAuthorship W3160305890A5043466330 @default.
- W3160305890 hasAuthorship W3160305890A5056417853 @default.
- W3160305890 hasAuthorship W3160305890A5062438840 @default.
- W3160305890 hasAuthorship W3160305890A5091296006 @default.
- W3160305890 hasBestOaLocation W31603058901 @default.
- W3160305890 hasConcept C111368507 @default.
- W3160305890 hasConcept C127313418 @default.
- W3160305890 hasConcept C129513315 @default.
- W3160305890 hasConcept C143050476 @default.
- W3160305890 hasConcept C145597803 @default.
- W3160305890 hasConcept C178790620 @default.
- W3160305890 hasConcept C185592680 @default.
- W3160305890 hasConcept C187320778 @default.
- W3160305890 hasConcept C197248824 @default.
- W3160305890 hasConcept C205649164 @default.
- W3160305890 hasConcept C2778902199 @default.
- W3160305890 hasConcept C2780659211 @default.
- W3160305890 hasConcept C36574619 @default.
- W3160305890 hasConcept C39432304 @default.
- W3160305890 hasConcept C45812177 @default.
- W3160305890 hasConcept C530467964 @default.
- W3160305890 hasConcept C55493867 @default.
- W3160305890 hasConcept C58640448 @default.
- W3160305890 hasConcept C76886044 @default.