Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160339120> ?p ?o ?g. }
- W3160339120 endingPage "804" @default.
- W3160339120 startingPage "804" @default.
- W3160339120 abstract "The purpose of this paper is to report quantitative data and models for the flow stress for the computer simulation of friction stir welding (FSW). In this paper, the flow stresses of the commercial 6061 aluminum alloy at the typical temperatures in FSW are investigated quantitatively by using hot compression tests. The typical temperatures during FSW are determined by reviewing the literature data. The measured data of flow stress, strain rate and temperature during hot compression tests are fitted to a Sellars–Tegart equation. An artificial neural network is trained to implement an accurate model for predicting the flow stress as a function of temperature and strain rate. Two models, i.e., the Sellars–Tegart equation and artificial neural network, for predicting the flow stress are compared. It is found that the root-mean-squared error (RMSE) between the measured and the predicted values are found to be 3.43 MPa for the model based on the Sellars–Tegart equation and 1.68 MPa for the model based on an artificial neural network. It is indicated that the artificial neural network has better flexibility than the Sellars–Tegart equation in predicting the flow stress at typical temperatures during FSW." @default.
- W3160339120 created "2021-05-24" @default.
- W3160339120 creator A5013376067 @default.
- W3160339120 creator A5023496283 @default.
- W3160339120 creator A5063489104 @default.
- W3160339120 date "2021-05-15" @default.
- W3160339120 modified "2023-10-01" @default.
- W3160339120 title "Flow Stress of 6061 Aluminum Alloy at Typical Temperatures during Friction Stir Welding Based on Hot Compression Tests" @default.
- W3160339120 cites W1964320748 @default.
- W3160339120 cites W1969273329 @default.
- W3160339120 cites W1972058487 @default.
- W3160339120 cites W1972141488 @default.
- W3160339120 cites W1976335333 @default.
- W3160339120 cites W1978186488 @default.
- W3160339120 cites W1982016672 @default.
- W3160339120 cites W1993201774 @default.
- W3160339120 cites W1997639905 @default.
- W3160339120 cites W1999523460 @default.
- W3160339120 cites W2003824825 @default.
- W3160339120 cites W2011817934 @default.
- W3160339120 cites W2013251806 @default.
- W3160339120 cites W2045862984 @default.
- W3160339120 cites W2053306927 @default.
- W3160339120 cites W2053596733 @default.
- W3160339120 cites W2056253385 @default.
- W3160339120 cites W2056579834 @default.
- W3160339120 cites W2079334621 @default.
- W3160339120 cites W2084826277 @default.
- W3160339120 cites W2093326824 @default.
- W3160339120 cites W2180143701 @default.
- W3160339120 cites W2325913050 @default.
- W3160339120 cites W2472784073 @default.
- W3160339120 cites W2561638654 @default.
- W3160339120 cites W2754569073 @default.
- W3160339120 cites W2766294995 @default.
- W3160339120 cites W2783185615 @default.
- W3160339120 cites W2786382348 @default.
- W3160339120 cites W2791631614 @default.
- W3160339120 cites W2804083182 @default.
- W3160339120 cites W2805980505 @default.
- W3160339120 cites W2894501687 @default.
- W3160339120 cites W2909880621 @default.
- W3160339120 cites W2914038306 @default.
- W3160339120 cites W2925027410 @default.
- W3160339120 cites W2944560345 @default.
- W3160339120 cites W2964285146 @default.
- W3160339120 cites W2969172844 @default.
- W3160339120 cites W2979325649 @default.
- W3160339120 cites W3023816265 @default.
- W3160339120 cites W3035239038 @default.
- W3160339120 cites W3038912475 @default.
- W3160339120 cites W3089998661 @default.
- W3160339120 cites W3117084508 @default.
- W3160339120 cites W3123180611 @default.
- W3160339120 cites W3134710048 @default.
- W3160339120 cites W3150696955 @default.
- W3160339120 cites W4292245070 @default.
- W3160339120 doi "https://doi.org/10.3390/met11050804" @default.
- W3160339120 hasPublicationYear "2021" @default.
- W3160339120 type Work @default.
- W3160339120 sameAs 3160339120 @default.
- W3160339120 citedByCount "7" @default.
- W3160339120 countsByYear W31603391202022 @default.
- W3160339120 countsByYear W31603391202023 @default.
- W3160339120 crossrefType "journal-article" @default.
- W3160339120 hasAuthorship W3160339120A5013376067 @default.
- W3160339120 hasAuthorship W3160339120A5023496283 @default.
- W3160339120 hasAuthorship W3160339120A5063489104 @default.
- W3160339120 hasBestOaLocation W31603391201 @default.
- W3160339120 hasConcept C105795698 @default.
- W3160339120 hasConcept C121332964 @default.
- W3160339120 hasConcept C127413603 @default.
- W3160339120 hasConcept C135628077 @default.
- W3160339120 hasConcept C138885662 @default.
- W3160339120 hasConcept C139945424 @default.
- W3160339120 hasConcept C149342994 @default.
- W3160339120 hasConcept C154945302 @default.
- W3160339120 hasConcept C159985019 @default.
- W3160339120 hasConcept C162611839 @default.
- W3160339120 hasConcept C180016635 @default.
- W3160339120 hasConcept C192562407 @default.
- W3160339120 hasConcept C19474535 @default.
- W3160339120 hasConcept C202973686 @default.
- W3160339120 hasConcept C21036866 @default.
- W3160339120 hasConcept C33923547 @default.
- W3160339120 hasConcept C38349280 @default.
- W3160339120 hasConcept C40367268 @default.
- W3160339120 hasConcept C41008148 @default.
- W3160339120 hasConcept C41895202 @default.
- W3160339120 hasConcept C50644808 @default.
- W3160339120 hasConcept C57879066 @default.
- W3160339120 hasConcept C66938386 @default.
- W3160339120 hasConceptScore W3160339120C105795698 @default.
- W3160339120 hasConceptScore W3160339120C121332964 @default.
- W3160339120 hasConceptScore W3160339120C127413603 @default.
- W3160339120 hasConceptScore W3160339120C135628077 @default.
- W3160339120 hasConceptScore W3160339120C138885662 @default.
- W3160339120 hasConceptScore W3160339120C139945424 @default.