Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160367890> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3160367890 endingPage "15" @default.
- W3160367890 startingPage "1" @default.
- W3160367890 abstract "Backtracking search optimization algorithm is a recent stochastic-based global search algorithm for solving real-valued numerical optimization problems. In this paper, a binary version of backtracking algorithm is proposed to deal with 0-1 optimization problems such as feature selection and knapsack problems. Feature selection is the process of selecting a subset of relevant features for use in model construction. Irrelevant features can negatively impact model performances. On the other hand, knapsack problem is a well-known optimization problem used to assess discrete algorithms. The objective of this research is to evaluate the discrete version of backtracking algorithm on the two mentioned problems and compare obtained results with other binary optimization algorithms using four usual classifiers: logistic regression, decision tree, random forest, and support vector machine. Empirical study on biological microarray data and experiments on 0-1 knapsack problems show the effectiveness of the binary algorithm and its ability to achieve good quality solutions for both problems." @default.
- W3160367890 created "2021-05-24" @default.
- W3160367890 creator A5016921626 @default.
- W3160367890 creator A5074010605 @default.
- W3160367890 date "2021-04-01" @default.
- W3160367890 modified "2023-09-25" @default.
- W3160367890 title "Feature Selection and Knapsack Problem Resolution Based on a Discrete Backtracking Optimization Algorithm" @default.
- W3160367890 cites W1701067754 @default.
- W3160367890 cites W1987092188 @default.
- W3160367890 cites W2010176468 @default.
- W3160367890 cites W2019683663 @default.
- W3160367890 cites W2046500899 @default.
- W3160367890 cites W2060348801 @default.
- W3160367890 cites W2074148701 @default.
- W3160367890 cites W2076046792 @default.
- W3160367890 cites W2119479037 @default.
- W3160367890 cites W2965743638 @default.
- W3160367890 cites W3005931882 @default.
- W3160367890 doi "https://doi.org/10.4018/ijaec.2021040101" @default.
- W3160367890 hasPublicationYear "2021" @default.
- W3160367890 type Work @default.
- W3160367890 sameAs 3160367890 @default.
- W3160367890 citedByCount "2" @default.
- W3160367890 countsByYear W31603678902022 @default.
- W3160367890 crossrefType "journal-article" @default.
- W3160367890 hasAuthorship W3160367890A5016921626 @default.
- W3160367890 hasAuthorship W3160367890A5074010605 @default.
- W3160367890 hasConcept C113138325 @default.
- W3160367890 hasConcept C11413529 @default.
- W3160367890 hasConcept C126255220 @default.
- W3160367890 hasConcept C137836250 @default.
- W3160367890 hasConcept C138885662 @default.
- W3160367890 hasConcept C145671259 @default.
- W3160367890 hasConcept C148483581 @default.
- W3160367890 hasConcept C154945302 @default.
- W3160367890 hasConcept C156884757 @default.
- W3160367890 hasConcept C2776401178 @default.
- W3160367890 hasConcept C33923547 @default.
- W3160367890 hasConcept C41008148 @default.
- W3160367890 hasConcept C41895202 @default.
- W3160367890 hasConcept C48372109 @default.
- W3160367890 hasConcept C94375191 @default.
- W3160367890 hasConcept C94569963 @default.
- W3160367890 hasConceptScore W3160367890C113138325 @default.
- W3160367890 hasConceptScore W3160367890C11413529 @default.
- W3160367890 hasConceptScore W3160367890C126255220 @default.
- W3160367890 hasConceptScore W3160367890C137836250 @default.
- W3160367890 hasConceptScore W3160367890C138885662 @default.
- W3160367890 hasConceptScore W3160367890C145671259 @default.
- W3160367890 hasConceptScore W3160367890C148483581 @default.
- W3160367890 hasConceptScore W3160367890C154945302 @default.
- W3160367890 hasConceptScore W3160367890C156884757 @default.
- W3160367890 hasConceptScore W3160367890C2776401178 @default.
- W3160367890 hasConceptScore W3160367890C33923547 @default.
- W3160367890 hasConceptScore W3160367890C41008148 @default.
- W3160367890 hasConceptScore W3160367890C41895202 @default.
- W3160367890 hasConceptScore W3160367890C48372109 @default.
- W3160367890 hasConceptScore W3160367890C94375191 @default.
- W3160367890 hasConceptScore W3160367890C94569963 @default.
- W3160367890 hasIssue "2" @default.
- W3160367890 hasLocation W31603678901 @default.
- W3160367890 hasOpenAccess W3160367890 @default.
- W3160367890 hasPrimaryLocation W31603678901 @default.
- W3160367890 hasRelatedWork W1534513247 @default.
- W3160367890 hasRelatedWork W2064477811 @default.
- W3160367890 hasRelatedWork W2162514707 @default.
- W3160367890 hasRelatedWork W2313743422 @default.
- W3160367890 hasRelatedWork W2955751097 @default.
- W3160367890 hasRelatedWork W2999213965 @default.
- W3160367890 hasRelatedWork W3006568799 @default.
- W3160367890 hasRelatedWork W3160367890 @default.
- W3160367890 hasRelatedWork W3171554204 @default.
- W3160367890 hasRelatedWork W2593238258 @default.
- W3160367890 hasVolume "12" @default.
- W3160367890 isParatext "false" @default.
- W3160367890 isRetracted "false" @default.
- W3160367890 magId "3160367890" @default.
- W3160367890 workType "article" @default.