Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160392377> ?p ?o ?g. }
- W3160392377 endingPage "115175" @default.
- W3160392377 startingPage "115175" @default.
- W3160392377 abstract "Electroencephalography (EEG) signals are the electrical signals which depicts the brain's neuronal activities. The EEG signals inherently have nondeterministic patterns. Hence, we have used a chaotic feature generation function to classify normal and abnormal EEG signals in this work. This research presents a new generation abnormal EEG detection model using a chaotic one-dimensional local binary pattern (CLBP) and wavelet packet decomposition (WPD) techniques. The Temple University Hospital (TUH) EEG dataset is used to develop and evaluate our chaotic feature generation model. In this work, the WPD is performed on EEG signals, and then CLBP is applied on the decomposed signals to extract the features. The iterative minimum redundancy maximum relevancy (ImRMR) is applied to select the clinically significant features. Finally, these features are classified into normal and abnormal EEG classes using a support vector machine (SVM) classifier. Our developed model yielded the detection accuracies of 93.84% to 98.19% for 24 channels using SVM classifier with ten-fold cross-validation strategy. We have obtained the highest classification performance of 98.19% for the PZ channel that is the highest performance so far using this database. Our developed model is ready to be tested with more EEG data." @default.
- W3160392377 created "2021-05-24" @default.
- W3160392377 creator A5040772000 @default.
- W3160392377 creator A5045783666 @default.
- W3160392377 creator A5067752341 @default.
- W3160392377 date "2021-11-01" @default.
- W3160392377 modified "2023-10-11" @default.
- W3160392377 title "Automated EEG signal classification using chaotic local binary pattern" @default.
- W3160392377 cites W1974928465 @default.
- W3160392377 cites W1981211771 @default.
- W3160392377 cites W1999771120 @default.
- W3160392377 cites W2004320486 @default.
- W3160392377 cites W2005791255 @default.
- W3160392377 cites W2012753694 @default.
- W3160392377 cites W2053744708 @default.
- W3160392377 cites W2058508918 @default.
- W3160392377 cites W2081377128 @default.
- W3160392377 cites W2092685533 @default.
- W3160392377 cites W2098844365 @default.
- W3160392377 cites W2107541057 @default.
- W3160392377 cites W2292649956 @default.
- W3160392377 cites W2334762131 @default.
- W3160392377 cites W2345279893 @default.
- W3160392377 cites W2462271429 @default.
- W3160392377 cites W2560372585 @default.
- W3160392377 cites W2592790850 @default.
- W3160392377 cites W2759483166 @default.
- W3160392377 cites W2795562373 @default.
- W3160392377 cites W2802832784 @default.
- W3160392377 cites W2892870261 @default.
- W3160392377 cites W2910379596 @default.
- W3160392377 cites W2915811296 @default.
- W3160392377 cites W2927852557 @default.
- W3160392377 cites W2962951526 @default.
- W3160392377 cites W2963568316 @default.
- W3160392377 cites W2964252002 @default.
- W3160392377 cites W2964267916 @default.
- W3160392377 cites W2965277555 @default.
- W3160392377 cites W2967246721 @default.
- W3160392377 cites W2990035072 @default.
- W3160392377 cites W2995395622 @default.
- W3160392377 cites W3001683732 @default.
- W3160392377 cites W3002244051 @default.
- W3160392377 cites W3002927318 @default.
- W3160392377 cites W3003074332 @default.
- W3160392377 cites W3006385477 @default.
- W3160392377 cites W3007426534 @default.
- W3160392377 cites W3007593444 @default.
- W3160392377 cites W3009928129 @default.
- W3160392377 cites W3011654399 @default.
- W3160392377 cites W3022172938 @default.
- W3160392377 cites W3036837013 @default.
- W3160392377 cites W3042678869 @default.
- W3160392377 cites W3043038561 @default.
- W3160392377 cites W3083715545 @default.
- W3160392377 cites W3099084711 @default.
- W3160392377 cites W3115616859 @default.
- W3160392377 doi "https://doi.org/10.1016/j.eswa.2021.115175" @default.
- W3160392377 hasPublicationYear "2021" @default.
- W3160392377 type Work @default.
- W3160392377 sameAs 3160392377 @default.
- W3160392377 citedByCount "9" @default.
- W3160392377 countsByYear W31603923772022 @default.
- W3160392377 countsByYear W31603923772023 @default.
- W3160392377 crossrefType "journal-article" @default.
- W3160392377 hasAuthorship W3160392377A5040772000 @default.
- W3160392377 hasAuthorship W3160392377A5045783666 @default.
- W3160392377 hasAuthorship W3160392377A5067752341 @default.
- W3160392377 hasConcept C118552586 @default.
- W3160392377 hasConcept C12267149 @default.
- W3160392377 hasConcept C153180895 @default.
- W3160392377 hasConcept C154945302 @default.
- W3160392377 hasConcept C15744967 @default.
- W3160392377 hasConcept C2777052490 @default.
- W3160392377 hasConcept C28490314 @default.
- W3160392377 hasConcept C41008148 @default.
- W3160392377 hasConcept C47432892 @default.
- W3160392377 hasConcept C522805319 @default.
- W3160392377 hasConcept C52622490 @default.
- W3160392377 hasConcept C66905080 @default.
- W3160392377 hasConceptScore W3160392377C118552586 @default.
- W3160392377 hasConceptScore W3160392377C12267149 @default.
- W3160392377 hasConceptScore W3160392377C153180895 @default.
- W3160392377 hasConceptScore W3160392377C154945302 @default.
- W3160392377 hasConceptScore W3160392377C15744967 @default.
- W3160392377 hasConceptScore W3160392377C2777052490 @default.
- W3160392377 hasConceptScore W3160392377C28490314 @default.
- W3160392377 hasConceptScore W3160392377C41008148 @default.
- W3160392377 hasConceptScore W3160392377C47432892 @default.
- W3160392377 hasConceptScore W3160392377C522805319 @default.
- W3160392377 hasConceptScore W3160392377C52622490 @default.
- W3160392377 hasConceptScore W3160392377C66905080 @default.
- W3160392377 hasLocation W31603923771 @default.
- W3160392377 hasOpenAccess W3160392377 @default.
- W3160392377 hasPrimaryLocation W31603923771 @default.
- W3160392377 hasRelatedWork W2041246122 @default.
- W3160392377 hasRelatedWork W2126100045 @default.
- W3160392377 hasRelatedWork W2336974148 @default.