Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160495622> ?p ?o ?g. }
- W3160495622 endingPage "15" @default.
- W3160495622 startingPage "1" @default.
- W3160495622 abstract "Big-data fault diagnosis methods based on deep learning (DL) have been widely studied in recent years. However, the number of labeled bearing fault samples is limited in industrial practice, and these samples usually are contained with complex environmental noise. Therefore, it is necessary to develop a generalizable DL model with strong feature learning ability. To tackle the above challenges, this article proposes a multiscale lightweight fault diagnosis model based on the idea of adversarial learning. The multiscale feature extraction unit is applied to the vibration signal for learning complementary and abundant fault information at different time scales, increasing the width and reducing the depth of the network. Meanwhile, a novel easy-to-train module based on the idea of adversarial learning is utilized to strengthen the feature learning ability by competitive optimization. Besides, the depthwise separable convolution is introduced to reduce the size of the network and achieve the lightweight design. These measures strengthen the feature learning ability and generalization of proposed method, and further ensure its noise robustness in the case of limited samples. The effectiveness of the proposed method has been verified on two bearing datasets, and experimental results show that the proposed method is robust to noise in the case of limited samples." @default.
- W3160495622 created "2021-05-24" @default.
- W3160495622 creator A5005526322 @default.
- W3160495622 creator A5010450555 @default.
- W3160495622 creator A5032844333 @default.
- W3160495622 creator A5053572946 @default.
- W3160495622 creator A5061654708 @default.
- W3160495622 creator A5074442919 @default.
- W3160495622 creator A5088503073 @default.
- W3160495622 date "2021-01-01" @default.
- W3160495622 modified "2023-10-13" @default.
- W3160495622 title "A Novel Multiscale Lightweight Fault Diagnosis Model Based on the Idea of Adversarial Learning" @default.
- W3160495622 cites W2112796928 @default.
- W3160495622 cites W2194775991 @default.
- W3160495622 cites W2471080557 @default.
- W3160495622 cites W2531409750 @default.
- W3160495622 cites W2560523472 @default.
- W3160495622 cites W2763583057 @default.
- W3160495622 cites W2765284480 @default.
- W3160495622 cites W2765516066 @default.
- W3160495622 cites W2791036512 @default.
- W3160495622 cites W2803978172 @default.
- W3160495622 cites W2890838230 @default.
- W3160495622 cites W2894023172 @default.
- W3160495622 cites W2903917280 @default.
- W3160495622 cites W2947583263 @default.
- W3160495622 cites W2963125010 @default.
- W3160495622 cites W2963163009 @default.
- W3160495622 cites W2963420686 @default.
- W3160495622 cites W2975932043 @default.
- W3160495622 cites W2988299412 @default.
- W3160495622 cites W2989818023 @default.
- W3160495622 cites W2991632793 @default.
- W3160495622 cites W2995167577 @default.
- W3160495622 cites W2998780022 @default.
- W3160495622 cites W2999247147 @default.
- W3160495622 cites W3000384844 @default.
- W3160495622 cites W3005493426 @default.
- W3160495622 cites W3007313142 @default.
- W3160495622 cites W3008309516 @default.
- W3160495622 cites W3009747427 @default.
- W3160495622 cites W3011928337 @default.
- W3160495622 cites W3015852309 @default.
- W3160495622 cites W3016646640 @default.
- W3160495622 cites W3019762726 @default.
- W3160495622 cites W3021294922 @default.
- W3160495622 cites W3025171967 @default.
- W3160495622 cites W3025853527 @default.
- W3160495622 cites W3025926773 @default.
- W3160495622 cites W3035414587 @default.
- W3160495622 cites W3043970225 @default.
- W3160495622 cites W3081032406 @default.
- W3160495622 doi "https://doi.org/10.1109/tim.2021.3076841" @default.
- W3160495622 hasPublicationYear "2021" @default.
- W3160495622 type Work @default.
- W3160495622 sameAs 3160495622 @default.
- W3160495622 citedByCount "8" @default.
- W3160495622 countsByYear W31604956222022 @default.
- W3160495622 countsByYear W31604956222023 @default.
- W3160495622 crossrefType "journal-article" @default.
- W3160495622 hasAuthorship W3160495622A5005526322 @default.
- W3160495622 hasAuthorship W3160495622A5010450555 @default.
- W3160495622 hasAuthorship W3160495622A5032844333 @default.
- W3160495622 hasAuthorship W3160495622A5053572946 @default.
- W3160495622 hasAuthorship W3160495622A5061654708 @default.
- W3160495622 hasAuthorship W3160495622A5074442919 @default.
- W3160495622 hasAuthorship W3160495622A5088503073 @default.
- W3160495622 hasConcept C104317684 @default.
- W3160495622 hasConcept C108583219 @default.
- W3160495622 hasConcept C115961682 @default.
- W3160495622 hasConcept C119857082 @default.
- W3160495622 hasConcept C124101348 @default.
- W3160495622 hasConcept C127313418 @default.
- W3160495622 hasConcept C153180895 @default.
- W3160495622 hasConcept C154945302 @default.
- W3160495622 hasConcept C165205528 @default.
- W3160495622 hasConcept C175551986 @default.
- W3160495622 hasConcept C185592680 @default.
- W3160495622 hasConcept C2778827112 @default.
- W3160495622 hasConcept C41008148 @default.
- W3160495622 hasConcept C45347329 @default.
- W3160495622 hasConcept C50644808 @default.
- W3160495622 hasConcept C52622490 @default.
- W3160495622 hasConcept C55493867 @default.
- W3160495622 hasConcept C59404180 @default.
- W3160495622 hasConcept C63479239 @default.
- W3160495622 hasConcept C99498987 @default.
- W3160495622 hasConceptScore W3160495622C104317684 @default.
- W3160495622 hasConceptScore W3160495622C108583219 @default.
- W3160495622 hasConceptScore W3160495622C115961682 @default.
- W3160495622 hasConceptScore W3160495622C119857082 @default.
- W3160495622 hasConceptScore W3160495622C124101348 @default.
- W3160495622 hasConceptScore W3160495622C127313418 @default.
- W3160495622 hasConceptScore W3160495622C153180895 @default.
- W3160495622 hasConceptScore W3160495622C154945302 @default.
- W3160495622 hasConceptScore W3160495622C165205528 @default.
- W3160495622 hasConceptScore W3160495622C175551986 @default.
- W3160495622 hasConceptScore W3160495622C185592680 @default.