Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160508715> ?p ?o ?g. }
- W3160508715 endingPage "150055" @default.
- W3160508715 startingPage "150055" @default.
- W3160508715 abstract "In this work, we have attempted to create the oxygen defects in Ca 2 Fe 2 O 5 (C2FONF) nanofibers via electrospinning technique and subsequent heat-treatment on as-spun nanofibers such as 700 °C (C2FONF-700), 800 °C (C2FONF-800), and 900 °C (C2FONF-900). Further, it is observed that C2FONF-900 sample consists of larger particle size, smaller surface area and highest number of oxygen defects as comparison to other as-prepared samples. As an LIB anode, C2FONF-900 exhibits better cyclic performance and rate capability. Furthermore, highest capacitive Li + storage is observed in C2FONF-900 which significantly related to the higher presence of oxygen defect and, thus, provides better rate performance. • Generation and tuning the oxygen defects in Ca 2 Fe 2 O 5 (C2FONF) nanofibers via electrospinning technique. • All the as-prepared samples are thoroughly characterized by XRD, FE-SEM, BET, XPS and I-V. • The influence of particle size, surface area and oxygen defect on the Li-storage properties of all the C2FONF samples are studied. • The sample having highest number of oxygen defects among others exhibit better cyclic and rate performance. • The presence of higher oxygen defects leads to the larger contribution of capacitive Li + storage which further provide excellent rate capability in C2FONF. In recent years, oxygen-defect (vacancies) and nanostructured-based materials have been fabricated and applied as electrode materials for lithium-ion batteries (LIBs). However, the individual role of oxygen defects and nanostructuring on the improvement of Li-storage performance is still not clear. In addition, the technique which generates the control amount of oxygen-defects as well as maintains the nanostructured morphology of the electrode materials is highly desirable. Hence, in this work, we have attempted to create the oxygen defects in Ca 2 Fe 2 O 5 (C2FONF) nanofibers via electrospinning technique and subsequent heat-treatment on as-spun nanofibers such as 700 °C (C2FONF-700), 800 °C (C2FONF-800), and 900 °C (C2FONF-900). All the as-prepared samples are characterized by XRD, FE-SEM, BET, XPS, and I-V characteristics. From the quantification of oxygen defect, it is observed that C2FONF-900 sample consists of the highest number of oxygen defects. As an LIB anode, C2FONF-900 exhibits superior reversible capacity (530 (±10) mAh g −1 at 50 mAg −1 up to 100 cycles), cyclability (370 (±10) mAh g −1 at 1C: 500 mAg −1 up to 100 cycles). Further, the rate capability of C2FONF-900 is found better than the C2FONF-700 and C2FONF-800. Furthermore, the study of capacitive/diffusion-controlled process showed the higher contribution of capacitive capacity in the C2FONF-900 electrodes, which is responsible for their better rate capability. In this study, we have shown that the Li-storage properties of iron-based oxides can be easily improved by tuning their concentration of oxygen defects while maintaining similar fibric nanostructure." @default.
- W3160508715 created "2021-05-24" @default.
- W3160508715 creator A5019299131 @default.
- W3160508715 creator A5077598360 @default.
- W3160508715 date "2021-09-01" @default.
- W3160508715 modified "2023-09-29" @default.
- W3160508715 title "Controlled generation and tuning the oxygen defects in nanofibers of Ca2Fe2O5 toward high and stable Li-ion battery anode" @default.
- W3160508715 cites W1563353581 @default.
- W3160508715 cites W2014661654 @default.
- W3160508715 cites W2031297978 @default.
- W3160508715 cites W2059790812 @default.
- W3160508715 cites W2068675014 @default.
- W3160508715 cites W2069169512 @default.
- W3160508715 cites W2097283197 @default.
- W3160508715 cites W2104656148 @default.
- W3160508715 cites W2110848839 @default.
- W3160508715 cites W2144970423 @default.
- W3160508715 cites W2737738192 @default.
- W3160508715 cites W2752449010 @default.
- W3160508715 cites W2788451266 @default.
- W3160508715 cites W2789877103 @default.
- W3160508715 cites W2793603800 @default.
- W3160508715 cites W2799630008 @default.
- W3160508715 cites W2800874832 @default.
- W3160508715 cites W2810649234 @default.
- W3160508715 cites W2888672804 @default.
- W3160508715 cites W2898618715 @default.
- W3160508715 cites W2902426346 @default.
- W3160508715 cites W2908542802 @default.
- W3160508715 cites W2913879576 @default.
- W3160508715 cites W2920977994 @default.
- W3160508715 cites W2930427218 @default.
- W3160508715 cites W2948305151 @default.
- W3160508715 cites W2965596581 @default.
- W3160508715 cites W2965709898 @default.
- W3160508715 cites W2972731316 @default.
- W3160508715 cites W2977482010 @default.
- W3160508715 cites W2980304101 @default.
- W3160508715 cites W2980758581 @default.
- W3160508715 cites W2995124692 @default.
- W3160508715 cites W2997547499 @default.
- W3160508715 cites W2999366466 @default.
- W3160508715 cites W3005657800 @default.
- W3160508715 cites W3021537352 @default.
- W3160508715 cites W3032880075 @default.
- W3160508715 cites W3037780450 @default.
- W3160508715 cites W3038206221 @default.
- W3160508715 cites W3041386319 @default.
- W3160508715 cites W3044335576 @default.
- W3160508715 cites W3045979730 @default.
- W3160508715 cites W3105119349 @default.
- W3160508715 cites W3127922598 @default.
- W3160508715 doi "https://doi.org/10.1016/j.apsusc.2021.150055" @default.
- W3160508715 hasPublicationYear "2021" @default.
- W3160508715 type Work @default.
- W3160508715 sameAs 3160508715 @default.
- W3160508715 citedByCount "13" @default.
- W3160508715 countsByYear W31605087152021 @default.
- W3160508715 countsByYear W31605087152022 @default.
- W3160508715 countsByYear W31605087152023 @default.
- W3160508715 crossrefType "journal-article" @default.
- W3160508715 hasAuthorship W3160508715A5019299131 @default.
- W3160508715 hasAuthorship W3160508715A5077598360 @default.
- W3160508715 hasConcept C127413603 @default.
- W3160508715 hasConcept C134018914 @default.
- W3160508715 hasConcept C144796933 @default.
- W3160508715 hasConcept C147789679 @default.
- W3160508715 hasConcept C159985019 @default.
- W3160508715 hasConcept C171250308 @default.
- W3160508715 hasConcept C17525397 @default.
- W3160508715 hasConcept C175708663 @default.
- W3160508715 hasConcept C178790620 @default.
- W3160508715 hasConcept C185592680 @default.
- W3160508715 hasConcept C192562407 @default.
- W3160508715 hasConcept C2778541603 @default.
- W3160508715 hasConcept C42360764 @default.
- W3160508715 hasConcept C521977710 @default.
- W3160508715 hasConcept C52859227 @default.
- W3160508715 hasConcept C540031477 @default.
- W3160508715 hasConcept C71924100 @default.
- W3160508715 hasConcept C89395315 @default.
- W3160508715 hasConcept C91129048 @default.
- W3160508715 hasConceptScore W3160508715C127413603 @default.
- W3160508715 hasConceptScore W3160508715C134018914 @default.
- W3160508715 hasConceptScore W3160508715C144796933 @default.
- W3160508715 hasConceptScore W3160508715C147789679 @default.
- W3160508715 hasConceptScore W3160508715C159985019 @default.
- W3160508715 hasConceptScore W3160508715C171250308 @default.
- W3160508715 hasConceptScore W3160508715C17525397 @default.
- W3160508715 hasConceptScore W3160508715C175708663 @default.
- W3160508715 hasConceptScore W3160508715C178790620 @default.
- W3160508715 hasConceptScore W3160508715C185592680 @default.
- W3160508715 hasConceptScore W3160508715C192562407 @default.
- W3160508715 hasConceptScore W3160508715C2778541603 @default.
- W3160508715 hasConceptScore W3160508715C42360764 @default.
- W3160508715 hasConceptScore W3160508715C521977710 @default.
- W3160508715 hasConceptScore W3160508715C52859227 @default.
- W3160508715 hasConceptScore W3160508715C540031477 @default.