Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160614929> ?p ?o ?g. }
- W3160614929 endingPage "4143" @default.
- W3160614929 startingPage "4133" @default.
- W3160614929 abstract "In the artificial neural networks domain, the Levenberg-Marquardt technique is novel with convergent stability and generates a numerical solution of the wire coating system for Sisko fluid flow (WCS-SFF) through regression plots, histogram representations, state transition measures, and means squared errors. In this paper, the analysis of fluid flow problem based on WCS-SFF is studied with a new application of intelligent computing system via supervised learning mechanism using the efficacy of neural networks trained by Levenberg-Marquardt algorithm (NN-TLMA). The original mathematical formulation in terms of PDEs for WCS-SFF is converted into dimensionless nonlinear ODEs. The data collection for the projected NN-TLMA is produced for parameters associated with the system model WCS-SFF influencing the velocity using the explicit Runge-Kutta technique. The training, validation, and testing processes of NN-TLMA are utilized to evaluate the obtained results of WCS-SFF for various cases, and a comparison of the obtained results is performed with reference data set to check the accuracy and effectiveness of the proposed algorithm NN-TLMA for the analysis of non-Newtonian fluid problem-related WCS-SFF. The proposed NN-TLMA for solving the WCS-SFF is effectively confirmed through state transition dynamics, mean square error, regression analyses, and error histogram studies. The powerful consistency of suggested outcomes with reference solutions indicates the validity of the framework, and the accuracy of 10-8 to 10-6 is also achieved." @default.
- W3160614929 created "2021-05-24" @default.
- W3160614929 creator A5014511287 @default.
- W3160614929 creator A5041238095 @default.
- W3160614929 creator A5069175841 @default.
- W3160614929 creator A5074827880 @default.
- W3160614929 creator A5080585392 @default.
- W3160614929 date "2021-12-01" @default.
- W3160614929 modified "2023-10-18" @default.
- W3160614929 title "Backpropagation of Levenberg Marquardt artificial neural networks for wire coating analysis in the bath of Sisko fluid" @default.
- W3160614929 cites W1968870341 @default.
- W3160614929 cites W2010537429 @default.
- W3160614929 cites W2020001540 @default.
- W3160614929 cites W2047893983 @default.
- W3160614929 cites W2331378817 @default.
- W3160614929 cites W2536822695 @default.
- W3160614929 cites W2728910590 @default.
- W3160614929 cites W2768028248 @default.
- W3160614929 cites W2795277054 @default.
- W3160614929 cites W2890106249 @default.
- W3160614929 cites W2893866332 @default.
- W3160614929 cites W2897547152 @default.
- W3160614929 cites W2912380684 @default.
- W3160614929 cites W2913658562 @default.
- W3160614929 cites W2943530309 @default.
- W3160614929 cites W2955057118 @default.
- W3160614929 cites W2970901327 @default.
- W3160614929 cites W2973865777 @default.
- W3160614929 cites W2977713779 @default.
- W3160614929 cites W2981207077 @default.
- W3160614929 cites W2995606192 @default.
- W3160614929 cites W3003679051 @default.
- W3160614929 cites W3009140875 @default.
- W3160614929 cites W3014361809 @default.
- W3160614929 cites W3015568951 @default.
- W3160614929 cites W3016712069 @default.
- W3160614929 cites W3028772455 @default.
- W3160614929 cites W3033468301 @default.
- W3160614929 cites W3036631204 @default.
- W3160614929 cites W3040738612 @default.
- W3160614929 cites W3047623305 @default.
- W3160614929 cites W3091827982 @default.
- W3160614929 cites W3092672090 @default.
- W3160614929 cites W3094858401 @default.
- W3160614929 cites W3096665853 @default.
- W3160614929 cites W3109534075 @default.
- W3160614929 doi "https://doi.org/10.1016/j.asej.2021.03.007" @default.
- W3160614929 hasPublicationYear "2021" @default.
- W3160614929 type Work @default.
- W3160614929 sameAs 3160614929 @default.
- W3160614929 citedByCount "16" @default.
- W3160614929 countsByYear W31606149292021 @default.
- W3160614929 countsByYear W31606149292022 @default.
- W3160614929 countsByYear W31606149292023 @default.
- W3160614929 crossrefType "journal-article" @default.
- W3160614929 hasAuthorship W3160614929A5014511287 @default.
- W3160614929 hasAuthorship W3160614929A5041238095 @default.
- W3160614929 hasAuthorship W3160614929A5069175841 @default.
- W3160614929 hasAuthorship W3160614929A5074827880 @default.
- W3160614929 hasAuthorship W3160614929A5080585392 @default.
- W3160614929 hasBestOaLocation W31606149291 @default.
- W3160614929 hasConcept C105795698 @default.
- W3160614929 hasConcept C11413529 @default.
- W3160614929 hasConcept C115961682 @default.
- W3160614929 hasConcept C139945424 @default.
- W3160614929 hasConcept C154945302 @default.
- W3160614929 hasConcept C155032097 @default.
- W3160614929 hasConcept C28826006 @default.
- W3160614929 hasConcept C33923547 @default.
- W3160614929 hasConcept C41008148 @default.
- W3160614929 hasConcept C50644808 @default.
- W3160614929 hasConcept C53533937 @default.
- W3160614929 hasConcept C87578567 @default.
- W3160614929 hasConceptScore W3160614929C105795698 @default.
- W3160614929 hasConceptScore W3160614929C11413529 @default.
- W3160614929 hasConceptScore W3160614929C115961682 @default.
- W3160614929 hasConceptScore W3160614929C139945424 @default.
- W3160614929 hasConceptScore W3160614929C154945302 @default.
- W3160614929 hasConceptScore W3160614929C155032097 @default.
- W3160614929 hasConceptScore W3160614929C28826006 @default.
- W3160614929 hasConceptScore W3160614929C33923547 @default.
- W3160614929 hasConceptScore W3160614929C41008148 @default.
- W3160614929 hasConceptScore W3160614929C50644808 @default.
- W3160614929 hasConceptScore W3160614929C53533937 @default.
- W3160614929 hasConceptScore W3160614929C87578567 @default.
- W3160614929 hasFunder F4320322322 @default.
- W3160614929 hasFunder F4320335726 @default.
- W3160614929 hasIssue "4" @default.
- W3160614929 hasLocation W31606149291 @default.
- W3160614929 hasLocation W31606149292 @default.
- W3160614929 hasOpenAccess W3160614929 @default.
- W3160614929 hasPrimaryLocation W31606149291 @default.
- W3160614929 hasRelatedWork W1987964582 @default.
- W3160614929 hasRelatedWork W2071030544 @default.
- W3160614929 hasRelatedWork W2084735228 @default.
- W3160614929 hasRelatedWork W2103957585 @default.
- W3160614929 hasRelatedWork W2391384657 @default.
- W3160614929 hasRelatedWork W2500095256 @default.