Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160717175> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3160717175 endingPage "100387" @default.
- W3160717175 startingPage "100387" @default.
- W3160717175 abstract "The management of protected areas and other recreational landscapes is subject to a variety of challenges. One aspect hereof, visitor monitoring, is crucial for many management and valuation tasks of ecosystem services. Its core data are visitor numbers which are costly to estimate in absence of entry fees for protected areas or recreational landscapes. Camera-based approaches have the potential to be both, accurate and deliver comprehensive data about visitor numbers, types and activities. So far, camera-based visitor monitoring is, however, costly due to time consuming manual image evaluation. To overcome this limitation, we deployed a convolutional neural network and compared its hourly counts against existing visitor counting methods such as manual in-situ counting, a pressure sensor, and manual camera image evaluations. Our study is the first one to implement, and explicitly assess the performance of a computer vision approach for visitor-monitoring. The results showed that the convolutional neural network derived comparable visitor numbers to the other visitor counting approaches regarding visitation patterns and numbers of visits. Further, our approach also allowed for counting dogs and recreational equipment such as backpacks and bicycles in automatic manner. We thus conclude that it is a fast and reliable method that could be used in protected areas as well as in a much wider array of visitor counting settings in other recreational landscapes. Managers of protected and recreational areas could benefit from our comparisons of convolutional neural network camera image evaluations with existing visitor counting approaches as: • Time-consuming manual image evaluation can be replaced by computer vision approaches based on convolutional neural networks (40 h to manually analyze more than 13,000 images by one expert vs. 10 h to do it automatically in the background). • In contrast to pressure sensors, this approach also allows to differentiate visitor types and activities (dog-walking, cycling, etc.) at comparably low-costs. • Future efforts should concentrate on training specific convolutional neural networks dedicated to visitor monitoring in recreational settings which could process imagery at real-time in the field using single-board computers. • Nevertheless, this approach is prone to the usual disadvantages of camera-based visitor monitoring (risks of theft, vandalism, malfunctioning; data security issues), which need to be considered when setting up the device." @default.
- W3160717175 created "2021-05-24" @default.
- W3160717175 creator A5045838390 @default.
- W3160717175 creator A5046449632 @default.
- W3160717175 creator A5050436795 @default.
- W3160717175 creator A5085807037 @default.
- W3160717175 creator A5089643173 @default.
- W3160717175 date "2021-09-01" @default.
- W3160717175 modified "2023-10-18" @default.
- W3160717175 title "Comparing established visitor monitoring approaches with triggered trail camera images and machine learning based computer vision" @default.
- W3160717175 cites W1964044622 @default.
- W3160717175 cites W1997926966 @default.
- W3160717175 cites W2017288094 @default.
- W3160717175 cites W2031454541 @default.
- W3160717175 cites W2034564500 @default.
- W3160717175 cites W2084724742 @default.
- W3160717175 cites W2094662847 @default.
- W3160717175 cites W2135656056 @default.
- W3160717175 cites W2176950688 @default.
- W3160717175 cites W2301276657 @default.
- W3160717175 cites W2413367505 @default.
- W3160717175 cites W2418367415 @default.
- W3160717175 cites W2532179924 @default.
- W3160717175 cites W2558004652 @default.
- W3160717175 cites W2565623564 @default.
- W3160717175 cites W2596669498 @default.
- W3160717175 cites W2610165754 @default.
- W3160717175 cites W2766746373 @default.
- W3160717175 cites W2770764808 @default.
- W3160717175 cites W2783620256 @default.
- W3160717175 cites W2791697444 @default.
- W3160717175 cites W2794192317 @default.
- W3160717175 cites W2796368515 @default.
- W3160717175 cites W2859048627 @default.
- W3160717175 cites W2912544980 @default.
- W3160717175 cites W2914978454 @default.
- W3160717175 cites W2915971115 @default.
- W3160717175 cites W2957889583 @default.
- W3160717175 cites W2964298670 @default.
- W3160717175 cites W2977871748 @default.
- W3160717175 cites W3002911616 @default.
- W3160717175 cites W3012546217 @default.
- W3160717175 cites W3022203320 @default.
- W3160717175 cites W3028220388 @default.
- W3160717175 cites W3048878843 @default.
- W3160717175 cites W3147748460 @default.
- W3160717175 cites W331106959 @default.
- W3160717175 doi "https://doi.org/10.1016/j.jort.2021.100387" @default.
- W3160717175 hasPublicationYear "2021" @default.
- W3160717175 type Work @default.
- W3160717175 sameAs 3160717175 @default.
- W3160717175 citedByCount "5" @default.
- W3160717175 countsByYear W31607171752021 @default.
- W3160717175 countsByYear W31607171752022 @default.
- W3160717175 countsByYear W31607171752023 @default.
- W3160717175 crossrefType "journal-article" @default.
- W3160717175 hasAuthorship W3160717175A5045838390 @default.
- W3160717175 hasAuthorship W3160717175A5046449632 @default.
- W3160717175 hasAuthorship W3160717175A5050436795 @default.
- W3160717175 hasAuthorship W3160717175A5085807037 @default.
- W3160717175 hasAuthorship W3160717175A5089643173 @default.
- W3160717175 hasConcept C107457646 @default.
- W3160717175 hasConcept C119857082 @default.
- W3160717175 hasConcept C121684516 @default.
- W3160717175 hasConcept C154945302 @default.
- W3160717175 hasConcept C199360897 @default.
- W3160717175 hasConcept C31972630 @default.
- W3160717175 hasConcept C41008148 @default.
- W3160717175 hasConcept C48947383 @default.
- W3160717175 hasConceptScore W3160717175C107457646 @default.
- W3160717175 hasConceptScore W3160717175C119857082 @default.
- W3160717175 hasConceptScore W3160717175C121684516 @default.
- W3160717175 hasConceptScore W3160717175C154945302 @default.
- W3160717175 hasConceptScore W3160717175C199360897 @default.
- W3160717175 hasConceptScore W3160717175C31972630 @default.
- W3160717175 hasConceptScore W3160717175C41008148 @default.
- W3160717175 hasConceptScore W3160717175C48947383 @default.
- W3160717175 hasLocation W31607171751 @default.
- W3160717175 hasOpenAccess W3160717175 @default.
- W3160717175 hasPrimaryLocation W31607171751 @default.
- W3160717175 hasRelatedWork W1891287906 @default.
- W3160717175 hasRelatedWork W1969923398 @default.
- W3160717175 hasRelatedWork W2036807459 @default.
- W3160717175 hasRelatedWork W2166024367 @default.
- W3160717175 hasRelatedWork W2755342338 @default.
- W3160717175 hasRelatedWork W2772917594 @default.
- W3160717175 hasRelatedWork W2775347418 @default.
- W3160717175 hasRelatedWork W2961085424 @default.
- W3160717175 hasRelatedWork W3116076068 @default.
- W3160717175 hasRelatedWork W4306674287 @default.
- W3160717175 hasVolume "35" @default.
- W3160717175 isParatext "false" @default.
- W3160717175 isRetracted "false" @default.
- W3160717175 magId "3160717175" @default.
- W3160717175 workType "article" @default.