Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160775840> ?p ?o ?g. }
- W3160775840 endingPage "102868" @default.
- W3160775840 startingPage "102868" @default.
- W3160775840 abstract "Road gradient (g), initial state of charge (SoCi), drag coefficient (Cd), road condition (RC), HVAC, driver aggressiveness (Dagg.), passenger loading (PL), stop density (SD), average speed (Va), Multiple Regression Analysis (MLR), Radial Basis Function (RBF), Decision Tree Model (DT), Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), Multilayer Perception Neural Network (MLP-NN), and Radial Basis Neural Network (RBNN) • We developed and validated a simulation model to estimate the E C of BEBs. • A factorial experimental design generated BEB operation scenarios. • Seven data-driven models are developed to predict BEB energy consumption. • The models accommodate vehicular, operational, topological, and external parameters. • Multiple Regression and support vector machine models are deemed appropriate to predict BEB’s E C . The energy consumption (E C ) of battery-electric buses (BEB) varies significantly due to the intertwined relationships of vehicular, operational, topological, and external parameters. This variation is posing several challenges to predict BEB’s energy consumption. Several studies are calling for the development of data-driven models to address this challenge. This study develops and compares seven data-driven modelling techniques that cover both machine learning and statistical models. The models are based on a full-factorial experimental design ( n = 907,199 ) of a validated Simulink energy simulation model. The models are then used to predict E C using a testing dataset ( n = 169,344 ). The results show some minor discrepancies between the developed models. All models explained more than 90% of the energy consumption variance. Further, the results indicate that road gradient and the battery state of charge are the most influential factors on E C , while driver behaviour and drag coefficient have the lowest impact." @default.
- W3160775840 created "2021-05-24" @default.
- W3160775840 creator A5003551947 @default.
- W3160775840 creator A5028978202 @default.
- W3160775840 creator A5041470517 @default.
- W3160775840 creator A5078077785 @default.
- W3160775840 date "2021-07-01" @default.
- W3160775840 modified "2023-10-16" @default.
- W3160775840 title "Machine learning prediction models for battery-electric bus energy consumption in transit" @default.
- W3160775840 cites W1523263609 @default.
- W3160775840 cites W1827589999 @default.
- W3160775840 cites W1973834760 @default.
- W3160775840 cites W1979362125 @default.
- W3160775840 cites W1996435693 @default.
- W3160775840 cites W2016954344 @default.
- W3160775840 cites W2020715838 @default.
- W3160775840 cites W2029662571 @default.
- W3160775840 cites W2033472041 @default.
- W3160775840 cites W2035476196 @default.
- W3160775840 cites W2048774959 @default.
- W3160775840 cites W2086598194 @default.
- W3160775840 cites W2088849001 @default.
- W3160775840 cites W2093625674 @default.
- W3160775840 cites W2096372286 @default.
- W3160775840 cites W2108227458 @default.
- W3160775840 cites W2111573683 @default.
- W3160775840 cites W2143388661 @default.
- W3160775840 cites W2161653223 @default.
- W3160775840 cites W2183715205 @default.
- W3160775840 cites W2270248276 @default.
- W3160775840 cites W2393145442 @default.
- W3160775840 cites W2398014817 @default.
- W3160775840 cites W2480801121 @default.
- W3160775840 cites W2487770199 @default.
- W3160775840 cites W2529038962 @default.
- W3160775840 cites W2582718034 @default.
- W3160775840 cites W2597327471 @default.
- W3160775840 cites W2610481170 @default.
- W3160775840 cites W2611422988 @default.
- W3160775840 cites W2611574869 @default.
- W3160775840 cites W2615310526 @default.
- W3160775840 cites W2615724625 @default.
- W3160775840 cites W2621172385 @default.
- W3160775840 cites W2747167073 @default.
- W3160775840 cites W2750138544 @default.
- W3160775840 cites W2758821133 @default.
- W3160775840 cites W2758893281 @default.
- W3160775840 cites W2764002648 @default.
- W3160775840 cites W2772754481 @default.
- W3160775840 cites W2795542459 @default.
- W3160775840 cites W2799553053 @default.
- W3160775840 cites W2808407428 @default.
- W3160775840 cites W2811312949 @default.
- W3160775840 cites W2889316083 @default.
- W3160775840 cites W2889593905 @default.
- W3160775840 cites W2900580771 @default.
- W3160775840 cites W2903184205 @default.
- W3160775840 cites W2903624615 @default.
- W3160775840 cites W2910278772 @default.
- W3160775840 cites W2910498758 @default.
- W3160775840 cites W2948156936 @default.
- W3160775840 cites W2962389917 @default.
- W3160775840 cites W2964874411 @default.
- W3160775840 cites W2983944635 @default.
- W3160775840 cites W3001072891 @default.
- W3160775840 cites W3010257512 @default.
- W3160775840 cites W3021005717 @default.
- W3160775840 cites W3025815279 @default.
- W3160775840 cites W3029312492 @default.
- W3160775840 cites W3100406409 @default.
- W3160775840 cites W3105098767 @default.
- W3160775840 cites W3163798297 @default.
- W3160775840 doi "https://doi.org/10.1016/j.trd.2021.102868" @default.
- W3160775840 hasPublicationYear "2021" @default.
- W3160775840 type Work @default.
- W3160775840 sameAs 3160775840 @default.
- W3160775840 citedByCount "35" @default.
- W3160775840 countsByYear W31607758402021 @default.
- W3160775840 countsByYear W31607758402022 @default.
- W3160775840 countsByYear W31607758402023 @default.
- W3160775840 crossrefType "journal-article" @default.
- W3160775840 hasAuthorship W3160775840A5003551947 @default.
- W3160775840 hasAuthorship W3160775840A5028978202 @default.
- W3160775840 hasAuthorship W3160775840A5041470517 @default.
- W3160775840 hasAuthorship W3160775840A5078077785 @default.
- W3160775840 hasConcept C119599485 @default.
- W3160775840 hasConcept C119857082 @default.
- W3160775840 hasConcept C121332964 @default.
- W3160775840 hasConcept C12267149 @default.
- W3160775840 hasConcept C127413603 @default.
- W3160775840 hasConcept C154945302 @default.
- W3160775840 hasConcept C163258240 @default.
- W3160775840 hasConcept C169258074 @default.
- W3160775840 hasConcept C2780165032 @default.
- W3160775840 hasConcept C41008148 @default.
- W3160775840 hasConcept C44154836 @default.
- W3160775840 hasConcept C48921125 @default.
- W3160775840 hasConcept C50644808 @default.