Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160805587> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3160805587 abstract "Motivation Understanding functions of proteins in specific human tissues is essential for insights into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains a critical challenge for biomedicine. Results Here, we present OhmNet , a hierarchy-aware unsupervised node feature learning approach for multi-layer networks. We build a multi-layer network, where each layer represents molecular interactions in a different human tissue. OhmNet then automatically learns a mapping of proteins, represented as nodes, to a neural embedding-based low-dimensional space of features. OhmNet encourages sharing of similar features among proteins with similar network neighborhoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which generally ignores relationships between tissues, by modeling tissue organization with a rich multiscale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein interaction network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions, OhmNet provides more accurate predictions of cellular function than alternative approaches, and also generates more accurate hypotheses about tissue-specific protein actions. We show that taking into account the tissue hierarchy leads to improved predictive power. Remarkably, we also demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellular functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to multiscale models able to predict a range of phenotypes spanning cellular subsystems. Availability and implementation Source code and datasets are available at http://snap.stanford.edu/ohmnet . Contact jure@cs.stanford.edu." @default.
- W3160805587 created "2021-05-24" @default.
- W3160805587 creator A5086052373 @default.
- W3160805587 creator A5091272738 @default.
- W3160805587 date "2019-07-30" @default.
- W3160805587 modified "2023-10-17" @default.
- W3160805587 title "Predicting multicellular function through multi-layer tissue networks" @default.
- W3160805587 doi "https://doi.org/10.7490/f1000research.1117192.1" @default.
- W3160805587 hasPublicationYear "2019" @default.
- W3160805587 type Work @default.
- W3160805587 sameAs 3160805587 @default.
- W3160805587 citedByCount "0" @default.
- W3160805587 crossrefType "journal-article" @default.
- W3160805587 hasAuthorship W3160805587A5086052373 @default.
- W3160805587 hasAuthorship W3160805587A5091272738 @default.
- W3160805587 hasConcept C104317684 @default.
- W3160805587 hasConcept C119857082 @default.
- W3160805587 hasConcept C138885662 @default.
- W3160805587 hasConcept C14036430 @default.
- W3160805587 hasConcept C153083717 @default.
- W3160805587 hasConcept C154945302 @default.
- W3160805587 hasConcept C162324750 @default.
- W3160805587 hasConcept C2776401178 @default.
- W3160805587 hasConcept C28225019 @default.
- W3160805587 hasConcept C31170391 @default.
- W3160805587 hasConcept C34447519 @default.
- W3160805587 hasConcept C41008148 @default.
- W3160805587 hasConcept C41895202 @default.
- W3160805587 hasConcept C54355233 @default.
- W3160805587 hasConcept C60644358 @default.
- W3160805587 hasConcept C66782513 @default.
- W3160805587 hasConcept C70721500 @default.
- W3160805587 hasConcept C74318829 @default.
- W3160805587 hasConcept C86803240 @default.
- W3160805587 hasConcept C95444343 @default.
- W3160805587 hasConceptScore W3160805587C104317684 @default.
- W3160805587 hasConceptScore W3160805587C119857082 @default.
- W3160805587 hasConceptScore W3160805587C138885662 @default.
- W3160805587 hasConceptScore W3160805587C14036430 @default.
- W3160805587 hasConceptScore W3160805587C153083717 @default.
- W3160805587 hasConceptScore W3160805587C154945302 @default.
- W3160805587 hasConceptScore W3160805587C162324750 @default.
- W3160805587 hasConceptScore W3160805587C2776401178 @default.
- W3160805587 hasConceptScore W3160805587C28225019 @default.
- W3160805587 hasConceptScore W3160805587C31170391 @default.
- W3160805587 hasConceptScore W3160805587C34447519 @default.
- W3160805587 hasConceptScore W3160805587C41008148 @default.
- W3160805587 hasConceptScore W3160805587C41895202 @default.
- W3160805587 hasConceptScore W3160805587C54355233 @default.
- W3160805587 hasConceptScore W3160805587C60644358 @default.
- W3160805587 hasConceptScore W3160805587C66782513 @default.
- W3160805587 hasConceptScore W3160805587C70721500 @default.
- W3160805587 hasConceptScore W3160805587C74318829 @default.
- W3160805587 hasConceptScore W3160805587C86803240 @default.
- W3160805587 hasConceptScore W3160805587C95444343 @default.
- W3160805587 hasLocation W31608055871 @default.
- W3160805587 hasOpenAccess W3160805587 @default.
- W3160805587 hasPrimaryLocation W31608055871 @default.
- W3160805587 hasRelatedWork W1550249922 @default.
- W3160805587 hasRelatedWork W1966653232 @default.
- W3160805587 hasRelatedWork W2032672182 @default.
- W3160805587 hasRelatedWork W2120191167 @default.
- W3160805587 hasRelatedWork W2338146922 @default.
- W3160805587 hasRelatedWork W2494863456 @default.
- W3160805587 hasRelatedWork W2525366608 @default.
- W3160805587 hasRelatedWork W2551775109 @default.
- W3160805587 hasRelatedWork W2777863841 @default.
- W3160805587 hasRelatedWork W2801622848 @default.
- W3160805587 hasRelatedWork W2899003199 @default.
- W3160805587 hasRelatedWork W2906521158 @default.
- W3160805587 hasRelatedWork W2912802963 @default.
- W3160805587 hasRelatedWork W2977176289 @default.
- W3160805587 hasRelatedWork W3003792773 @default.
- W3160805587 hasRelatedWork W3007484243 @default.
- W3160805587 hasRelatedWork W3014623641 @default.
- W3160805587 hasRelatedWork W3037025616 @default.
- W3160805587 hasRelatedWork W3046842926 @default.
- W3160805587 hasRelatedWork W3195026381 @default.
- W3160805587 hasVolume "8" @default.
- W3160805587 isParatext "false" @default.
- W3160805587 isRetracted "false" @default.
- W3160805587 magId "3160805587" @default.
- W3160805587 workType "article" @default.