Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160825860> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3160825860 endingPage "741" @default.
- W3160825860 startingPage "735" @default.
- W3160825860 abstract "Although the proportion of wind energy sources in the system is increasing, the variability and stochastic characteristics of wind power have a negative effect on system stability and on the rescheduling of the system’s power generation. Therefore, an accurate prediction of wind power generation is necessary for stable power distribution in the power system. High-precision wind power forecasting provides a reliable basis for dispatching of power system. Since wind power data is time series data with uncertainty, a suitable model, the LSTM algorithm of Keras, was proposed to predict a short-term wind power generation. The LSTM has memory to store past states, so it is suitable for the problem of predicting time series data. This paper proposes a forecasting procedure using an LSTM neural network to forecast wind power. First, Pearson correlation coefficient method is utilized to determine the parameters of LSTM forecasting model. Then a case study was performed using real data collected from a wind farm in Yeongheung to confirm that the LSTM model was suitable for wind power prediction." @default.
- W3160825860 created "2021-05-24" @default.
- W3160825860 creator A5001420886 @default.
- W3160825860 creator A5011861620 @default.
- W3160825860 creator A5074221614 @default.
- W3160825860 date "2021-05-31" @default.
- W3160825860 modified "2023-10-01" @default.
- W3160825860 title "A Study on Prediction of Wind Power Based on Deep-Learning Using Weather Data" @default.
- W3160825860 doi "https://doi.org/10.5370/kiee.2021.70.5.735" @default.
- W3160825860 hasPublicationYear "2021" @default.
- W3160825860 type Work @default.
- W3160825860 sameAs 3160825860 @default.
- W3160825860 citedByCount "1" @default.
- W3160825860 countsByYear W31608258602023 @default.
- W3160825860 crossrefType "journal-article" @default.
- W3160825860 hasAuthorship W3160825860A5001420886 @default.
- W3160825860 hasAuthorship W3160825860A5011861620 @default.
- W3160825860 hasAuthorship W3160825860A5074221614 @default.
- W3160825860 hasConcept C112972136 @default.
- W3160825860 hasConcept C119599485 @default.
- W3160825860 hasConcept C119857082 @default.
- W3160825860 hasConcept C121332964 @default.
- W3160825860 hasConcept C127413603 @default.
- W3160825860 hasConcept C147947694 @default.
- W3160825860 hasConcept C151406439 @default.
- W3160825860 hasConcept C153294291 @default.
- W3160825860 hasConcept C154945302 @default.
- W3160825860 hasConcept C161067210 @default.
- W3160825860 hasConcept C163258240 @default.
- W3160825860 hasConcept C2781084341 @default.
- W3160825860 hasConcept C41008148 @default.
- W3160825860 hasConcept C50644808 @default.
- W3160825860 hasConcept C62520636 @default.
- W3160825860 hasConcept C78600449 @default.
- W3160825860 hasConcept C89227174 @default.
- W3160825860 hasConceptScore W3160825860C112972136 @default.
- W3160825860 hasConceptScore W3160825860C119599485 @default.
- W3160825860 hasConceptScore W3160825860C119857082 @default.
- W3160825860 hasConceptScore W3160825860C121332964 @default.
- W3160825860 hasConceptScore W3160825860C127413603 @default.
- W3160825860 hasConceptScore W3160825860C147947694 @default.
- W3160825860 hasConceptScore W3160825860C151406439 @default.
- W3160825860 hasConceptScore W3160825860C153294291 @default.
- W3160825860 hasConceptScore W3160825860C154945302 @default.
- W3160825860 hasConceptScore W3160825860C161067210 @default.
- W3160825860 hasConceptScore W3160825860C163258240 @default.
- W3160825860 hasConceptScore W3160825860C2781084341 @default.
- W3160825860 hasConceptScore W3160825860C41008148 @default.
- W3160825860 hasConceptScore W3160825860C50644808 @default.
- W3160825860 hasConceptScore W3160825860C62520636 @default.
- W3160825860 hasConceptScore W3160825860C78600449 @default.
- W3160825860 hasConceptScore W3160825860C89227174 @default.
- W3160825860 hasIssue "5" @default.
- W3160825860 hasLocation W31608258601 @default.
- W3160825860 hasOpenAccess W3160825860 @default.
- W3160825860 hasPrimaryLocation W31608258601 @default.
- W3160825860 hasRelatedWork W1635056283 @default.
- W3160825860 hasRelatedWork W2026619973 @default.
- W3160825860 hasRelatedWork W2108824233 @default.
- W3160825860 hasRelatedWork W2153263933 @default.
- W3160825860 hasRelatedWork W2370333049 @default.
- W3160825860 hasRelatedWork W2383707816 @default.
- W3160825860 hasRelatedWork W2528649053 @default.
- W3160825860 hasRelatedWork W3033688541 @default.
- W3160825860 hasRelatedWork W4205282669 @default.
- W3160825860 hasRelatedWork W2037194002 @default.
- W3160825860 hasVolume "70" @default.
- W3160825860 isParatext "false" @default.
- W3160825860 isRetracted "false" @default.
- W3160825860 magId "3160825860" @default.
- W3160825860 workType "article" @default.