Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160855543> ?p ?o ?g. }
- W3160855543 abstract "Principal Component Analysis (PCA) is a widely used technique for dimensionality reduction in various problem domains, including data compression, image processing, visualization, exploratory data analysis, pattern recognition, time-series prediction, and machine learning. Often, data is presented in a correlated paired manner such that there exist observable and correlated unobservable measurements. Unfortunately, traditional PCA techniques generally fail to optimally capture the leverageable correlations between such paired data as it does not yield a maximally correlated basis between the observable and unobservable counterparts. This instead is the objective of Canonical Correlation Analysis (and the more general Partial Least Squares methods); however, such techniques are still symmetric in maximizing correlation (covariance for PLSR) over all choices of the basis for both datasets without differentiating between observable and unobservable variables (except for the regression phase of PLSR). Further, these methods deviate from PCA's formulation objective to minimize approximation error, seeking instead to maximize correlation or covariance. While these are sensible optimization objectives, they are not equivalent to error minimization. We therefore introduce a new method of leveraging PCA between paired datasets in a dependently coupled manner, which is optimal with respect to approximation error during training. We generate a dependently coupled paired basis for which we relax orthogonality constraints in decomposing unreliable unobservable measurements. In doing so, this allows us to optimally capture the variations of the observable data while conditionally minimizing the expected prediction error for the unobservable component. We show preliminary results that demonstrate improved learning of our proposed method compared to that of traditional techniques." @default.
- W3160855543 created "2021-05-24" @default.
- W3160855543 creator A5014124403 @default.
- W3160855543 creator A5016583911 @default.
- W3160855543 creator A5017360469 @default.
- W3160855543 creator A5070143939 @default.
- W3160855543 creator A5070821128 @default.
- W3160855543 date "2021-01-10" @default.
- W3160855543 modified "2023-09-23" @default.
- W3160855543 title "Dependently Coupled Principal Component Analysis for Bivariate Inversion Problems" @default.
- W3160855543 cites W1553900559 @default.
- W3160855543 cites W1948350624 @default.
- W3160855543 cites W1968206427 @default.
- W3160855543 cites W2010048326 @default.
- W3160855543 cites W2053186076 @default.
- W3160855543 cites W2063159792 @default.
- W3160855543 cites W2071254771 @default.
- W3160855543 cites W2085262125 @default.
- W3160855543 cites W2125949583 @default.
- W3160855543 cites W2143452246 @default.
- W3160855543 cites W2147484997 @default.
- W3160855543 cites W2167338900 @default.
- W3160855543 cites W2294798173 @default.
- W3160855543 cites W2921868376 @default.
- W3160855543 cites W3123006928 @default.
- W3160855543 cites W4249992252 @default.
- W3160855543 cites W69540256 @default.
- W3160855543 doi "https://doi.org/10.1109/icpr48806.2021.9413305" @default.
- W3160855543 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8330695" @default.
- W3160855543 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34350427" @default.
- W3160855543 hasPublicationYear "2021" @default.
- W3160855543 type Work @default.
- W3160855543 sameAs 3160855543 @default.
- W3160855543 citedByCount "1" @default.
- W3160855543 countsByYear W31608555432022 @default.
- W3160855543 crossrefType "proceedings-article" @default.
- W3160855543 hasAuthorship W3160855543A5014124403 @default.
- W3160855543 hasAuthorship W3160855543A5016583911 @default.
- W3160855543 hasAuthorship W3160855543A5017360469 @default.
- W3160855543 hasAuthorship W3160855543A5070143939 @default.
- W3160855543 hasAuthorship W3160855543A5070821128 @default.
- W3160855543 hasBestOaLocation W31608555432 @default.
- W3160855543 hasConcept C105795698 @default.
- W3160855543 hasConcept C111030470 @default.
- W3160855543 hasConcept C11413529 @default.
- W3160855543 hasConcept C119857082 @default.
- W3160855543 hasConcept C121332964 @default.
- W3160855543 hasConcept C12426560 @default.
- W3160855543 hasConcept C149782125 @default.
- W3160855543 hasConcept C153180895 @default.
- W3160855543 hasConcept C153874254 @default.
- W3160855543 hasConcept C154945302 @default.
- W3160855543 hasConcept C178650346 @default.
- W3160855543 hasConcept C185142706 @default.
- W3160855543 hasConcept C2524010 @default.
- W3160855543 hasConcept C27438332 @default.
- W3160855543 hasConcept C2780695315 @default.
- W3160855543 hasConcept C32848918 @default.
- W3160855543 hasConcept C33923547 @default.
- W3160855543 hasConcept C41008148 @default.
- W3160855543 hasConcept C51432778 @default.
- W3160855543 hasConcept C62520636 @default.
- W3160855543 hasConcept C64341305 @default.
- W3160855543 hasConcept C70518039 @default.
- W3160855543 hasConceptScore W3160855543C105795698 @default.
- W3160855543 hasConceptScore W3160855543C111030470 @default.
- W3160855543 hasConceptScore W3160855543C11413529 @default.
- W3160855543 hasConceptScore W3160855543C119857082 @default.
- W3160855543 hasConceptScore W3160855543C121332964 @default.
- W3160855543 hasConceptScore W3160855543C12426560 @default.
- W3160855543 hasConceptScore W3160855543C149782125 @default.
- W3160855543 hasConceptScore W3160855543C153180895 @default.
- W3160855543 hasConceptScore W3160855543C153874254 @default.
- W3160855543 hasConceptScore W3160855543C154945302 @default.
- W3160855543 hasConceptScore W3160855543C178650346 @default.
- W3160855543 hasConceptScore W3160855543C185142706 @default.
- W3160855543 hasConceptScore W3160855543C2524010 @default.
- W3160855543 hasConceptScore W3160855543C27438332 @default.
- W3160855543 hasConceptScore W3160855543C2780695315 @default.
- W3160855543 hasConceptScore W3160855543C32848918 @default.
- W3160855543 hasConceptScore W3160855543C33923547 @default.
- W3160855543 hasConceptScore W3160855543C41008148 @default.
- W3160855543 hasConceptScore W3160855543C51432778 @default.
- W3160855543 hasConceptScore W3160855543C62520636 @default.
- W3160855543 hasConceptScore W3160855543C64341305 @default.
- W3160855543 hasConceptScore W3160855543C70518039 @default.
- W3160855543 hasLocation W31608555431 @default.
- W3160855543 hasLocation W31608555432 @default.
- W3160855543 hasOpenAccess W3160855543 @default.
- W3160855543 hasPrimaryLocation W31608555431 @default.
- W3160855543 hasRelatedWork W1519943554 @default.
- W3160855543 hasRelatedWork W2327212543 @default.
- W3160855543 hasRelatedWork W2360796461 @default.
- W3160855543 hasRelatedWork W2367071180 @default.
- W3160855543 hasRelatedWork W2372778180 @default.
- W3160855543 hasRelatedWork W2379533788 @default.
- W3160855543 hasRelatedWork W2385928515 @default.
- W3160855543 hasRelatedWork W3017062960 @default.
- W3160855543 hasRelatedWork W3160709304 @default.
- W3160855543 hasRelatedWork W4206037513 @default.