Matches in SemOpenAlex for { <https://semopenalex.org/work/W3160886584> ?p ?o ?g. }
- W3160886584 endingPage "1092" @default.
- W3160886584 startingPage "1081" @default.
- W3160886584 abstract "Remaining useful life (RUL) prediction is a key solution to improve the reliability, availability, and maintainability of engineering systems. Long short-term memory (LSTM) and convolution neural networks (CNN) are the current hotspots in the field of RUL prediction. However, the LSTM-based prognostic approach has a slow loop step to process large-scale time-series data since the dependence of the data processing process at each time on the output of the previous time limits parallelism, and the CNN-based prognostic approach is not fit for time-series data although it can process the data in parallel. In this article, a new autoencoder quasi-recurrent neural networks (AEQRNN) based prognostic approach is proposed for RUL prediction of the engineering systems. The AEQRNN contains convolution components that can process input data in parallel, and pooling components which has two LSTM-like gate structures to process time-series data. In addition, the AEQRNN can automatically extract hidden features from monitoring signals without manual feature design. The effectiveness of the proposed prognostic approach is validated by three prognostic benchmarking datasets, including a turbofan engine dataset, a rolling bearing dataset, and a machining tool dataset. Experimental results demonstrate that this approach has both superior prognostic performance and training speed in comparison with other kinds of recurrent-neural-network-based approaches and various state-of-the-art approaches in the recent literature." @default.
- W3160886584 created "2021-05-24" @default.
- W3160886584 creator A5001189952 @default.
- W3160886584 creator A5001798229 @default.
- W3160886584 creator A5040651707 @default.
- W3160886584 creator A5047138391 @default.
- W3160886584 creator A5048436032 @default.
- W3160886584 date "2022-04-01" @default.
- W3160886584 modified "2023-10-15" @default.
- W3160886584 title "Autoencoder Quasi-Recurrent Neural Networks for Remaining Useful Life Prediction of Engineering Systems" @default.
- W3160886584 cites W1978965153 @default.
- W3160886584 cites W2013821261 @default.
- W3160886584 cites W2044309218 @default.
- W3160886584 cites W2106544870 @default.
- W3160886584 cites W2110787940 @default.
- W3160886584 cites W2120841219 @default.
- W3160886584 cites W2594845301 @default.
- W3160886584 cites W2624573431 @default.
- W3160886584 cites W2726451741 @default.
- W3160886584 cites W2758361465 @default.
- W3160886584 cites W2772084711 @default.
- W3160886584 cites W2773549135 @default.
- W3160886584 cites W2779615422 @default.
- W3160886584 cites W2794469369 @default.
- W3160886584 cites W2808622270 @default.
- W3160886584 cites W2810292802 @default.
- W3160886584 cites W2889809771 @default.
- W3160886584 cites W2904460913 @default.
- W3160886584 cites W2905189977 @default.
- W3160886584 cites W2908875359 @default.
- W3160886584 cites W2914488306 @default.
- W3160886584 cites W2927135077 @default.
- W3160886584 cites W2951576719 @default.
- W3160886584 cites W2952602217 @default.
- W3160886584 cites W2955707118 @default.
- W3160886584 cites W2961350108 @default.
- W3160886584 cites W2963148318 @default.
- W3160886584 cites W2971801691 @default.
- W3160886584 cites W2972641997 @default.
- W3160886584 cites W2977223508 @default.
- W3160886584 cites W2978540646 @default.
- W3160886584 cites W2981973403 @default.
- W3160886584 cites W2996650494 @default.
- W3160886584 cites W2997308049 @default.
- W3160886584 cites W3006585575 @default.
- W3160886584 cites W3013836129 @default.
- W3160886584 cites W3016665419 @default.
- W3160886584 cites W3020895169 @default.
- W3160886584 cites W3042648368 @default.
- W3160886584 cites W3043216915 @default.
- W3160886584 cites W3044911604 @default.
- W3160886584 cites W3116796810 @default.
- W3160886584 cites W3122126208 @default.
- W3160886584 cites W3143638720 @default.
- W3160886584 doi "https://doi.org/10.1109/tmech.2021.3079729" @default.
- W3160886584 hasPublicationYear "2022" @default.
- W3160886584 type Work @default.
- W3160886584 sameAs 3160886584 @default.
- W3160886584 citedByCount "23" @default.
- W3160886584 countsByYear W31608865842021 @default.
- W3160886584 countsByYear W31608865842022 @default.
- W3160886584 countsByYear W31608865842023 @default.
- W3160886584 crossrefType "journal-article" @default.
- W3160886584 hasAuthorship W3160886584A5001189952 @default.
- W3160886584 hasAuthorship W3160886584A5001798229 @default.
- W3160886584 hasAuthorship W3160886584A5040651707 @default.
- W3160886584 hasAuthorship W3160886584A5047138391 @default.
- W3160886584 hasAuthorship W3160886584A5048436032 @default.
- W3160886584 hasConcept C101738243 @default.
- W3160886584 hasConcept C108583219 @default.
- W3160886584 hasConcept C111919701 @default.
- W3160886584 hasConcept C119857082 @default.
- W3160886584 hasConcept C121332964 @default.
- W3160886584 hasConcept C124101348 @default.
- W3160886584 hasConcept C129364497 @default.
- W3160886584 hasConcept C144133560 @default.
- W3160886584 hasConcept C147168706 @default.
- W3160886584 hasConcept C151406439 @default.
- W3160886584 hasConcept C153180895 @default.
- W3160886584 hasConcept C154945302 @default.
- W3160886584 hasConcept C162853370 @default.
- W3160886584 hasConcept C163258240 @default.
- W3160886584 hasConcept C2778827112 @default.
- W3160886584 hasConcept C41008148 @default.
- W3160886584 hasConcept C43214815 @default.
- W3160886584 hasConcept C45347329 @default.
- W3160886584 hasConcept C50644808 @default.
- W3160886584 hasConcept C62520636 @default.
- W3160886584 hasConcept C70437156 @default.
- W3160886584 hasConcept C86251818 @default.
- W3160886584 hasConcept C98045186 @default.
- W3160886584 hasConceptScore W3160886584C101738243 @default.
- W3160886584 hasConceptScore W3160886584C108583219 @default.
- W3160886584 hasConceptScore W3160886584C111919701 @default.
- W3160886584 hasConceptScore W3160886584C119857082 @default.
- W3160886584 hasConceptScore W3160886584C121332964 @default.
- W3160886584 hasConceptScore W3160886584C124101348 @default.
- W3160886584 hasConceptScore W3160886584C129364497 @default.