Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161053278> ?p ?o ?g. }
- W3161053278 endingPage "e26892" @default.
- W3161053278 startingPage "e26892" @default.
- W3161053278 abstract "Phenotypes characterize the clinical manifestations of diseases and provide important information for diagnosis. Therefore, the construction of phenotype knowledge graphs for diseases is valuable to the development of artificial intelligence in medicine. However, phenotype knowledge graphs in current knowledge bases such as WikiData and DBpedia are coarse-grained knowledge graphs because they only consider the core concepts of phenotypes while neglecting the details (attributes) associated with these phenotypes.To characterize the details of disease phenotypes for clinical guidelines, we proposed a fine-grained semantic information model named PhenoSSU (semantic structured unit of phenotypes).PhenoSSU is an entity-attribute-value model by its very nature, and it aims to capture the full semantic information underlying phenotype descriptions with a series of attributes and values. A total of 193 clinical guidelines for infectious diseases from Wikipedia were selected as the study corpus, and 12 attributes from SNOMED-CT were introduced into the PhenoSSU model based on the co-occurrences of phenotype concepts and attribute values. The expressive power of the PhenoSSU model was evaluated by analyzing whether PhenoSSU instances could capture the full semantics underlying the descriptions of the corresponding phenotypes. To automatically construct fine-grained phenotype knowledge graphs, a hybrid strategy that first recognized phenotype concepts with the MetaMap tool and then predicted the attribute values of phenotypes with machine learning classifiers was developed.Fine-grained phenotype knowledge graphs of 193 infectious diseases were manually constructed with the BRAT annotation tool. A total of 4020 PhenoSSU instances were annotated in these knowledge graphs, and 3757 of them (89.5%) were found to be able to capture the full semantics underlying the descriptions of the corresponding phenotypes listed in clinical guidelines. By comparison, other information models, such as the clinical element model and the HL7 fast health care interoperability resource model, could only capture the full semantics underlying 48.4% (2034/4020) and 21.8% (914/4020) of the descriptions of phenotypes listed in clinical guidelines, respectively. The hybrid strategy achieved an F1-score of 0.732 for the subtask of phenotype concept recognition and an average weighted accuracy of 0.776 for the subtask of attribute value prediction.PhenoSSU is an effective information model for the precise representation of phenotype knowledge for clinical guidelines, and machine learning can be used to improve the efficiency of constructing PhenoSSU-based knowledge graphs. Our work will potentially shift the focus of medical knowledge engineering from a coarse-grained level to a more fine-grained level." @default.
- W3161053278 created "2021-05-24" @default.
- W3161053278 creator A5049101532 @default.
- W3161053278 creator A5060955273 @default.
- W3161053278 creator A5062116814 @default.
- W3161053278 creator A5071068810 @default.
- W3161053278 creator A5075109948 @default.
- W3161053278 creator A5080371739 @default.
- W3161053278 date "2021-06-15" @default.
- W3161053278 modified "2023-10-03" @default.
- W3161053278 title "Constructing High-Fidelity Phenotype Knowledge Graphs for Infectious Diseases With a Fine-Grained Semantic Information Model: Development and Usability Study" @default.
- W3161053278 cites W1552847225 @default.
- W3161053278 cites W1964625659 @default.
- W3161053278 cites W2025349319 @default.
- W3161053278 cites W2100133323 @default.
- W3161053278 cites W2101086247 @default.
- W3161053278 cites W2122402213 @default.
- W3161053278 cites W2136798907 @default.
- W3161053278 cites W2141282841 @default.
- W3161053278 cites W2148143831 @default.
- W3161053278 cites W2159583324 @default.
- W3161053278 cites W2164572080 @default.
- W3161053278 cites W2168041406 @default.
- W3161053278 cites W2179498003 @default.
- W3161053278 cites W2263904841 @default.
- W3161053278 cites W2272393342 @default.
- W3161053278 cites W2517194566 @default.
- W3161053278 cites W2558586574 @default.
- W3161053278 cites W2582146834 @default.
- W3161053278 cites W2753068549 @default.
- W3161053278 cites W2762181533 @default.
- W3161053278 cites W2768488789 @default.
- W3161053278 cites W2898031839 @default.
- W3161053278 cites W2921745518 @default.
- W3161053278 cites W2975135115 @default.
- W3161053278 cites W2993873509 @default.
- W3161053278 cites W2996219887 @default.
- W3161053278 cites W2997591727 @default.
- W3161053278 cites W3045670760 @default.
- W3161053278 cites W3089650935 @default.
- W3161053278 cites W3095102699 @default.
- W3161053278 cites W3100221118 @default.
- W3161053278 cites W3108071946 @default.
- W3161053278 cites W4213016248 @default.
- W3161053278 cites W4243822621 @default.
- W3161053278 cites W4294214983 @default.
- W3161053278 doi "https://doi.org/10.2196/26892" @default.
- W3161053278 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8317041" @default.
- W3161053278 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34255682" @default.
- W3161053278 hasPublicationYear "2021" @default.
- W3161053278 type Work @default.
- W3161053278 sameAs 3161053278 @default.
- W3161053278 citedByCount "6" @default.
- W3161053278 countsByYear W31610532782022 @default.
- W3161053278 countsByYear W31610532782023 @default.
- W3161053278 crossrefType "journal-article" @default.
- W3161053278 hasAuthorship W3161053278A5049101532 @default.
- W3161053278 hasAuthorship W3161053278A5060955273 @default.
- W3161053278 hasAuthorship W3161053278A5062116814 @default.
- W3161053278 hasAuthorship W3161053278A5071068810 @default.
- W3161053278 hasAuthorship W3161053278A5075109948 @default.
- W3161053278 hasAuthorship W3161053278A5080371739 @default.
- W3161053278 hasBestOaLocation W31610532781 @default.
- W3161053278 hasConcept C104317684 @default.
- W3161053278 hasConcept C127716648 @default.
- W3161053278 hasConcept C138885662 @default.
- W3161053278 hasConcept C154945302 @default.
- W3161053278 hasConcept C184337299 @default.
- W3161053278 hasConcept C199360897 @default.
- W3161053278 hasConcept C204321447 @default.
- W3161053278 hasConcept C206497026 @default.
- W3161053278 hasConcept C23123220 @default.
- W3161053278 hasConcept C2776321320 @default.
- W3161053278 hasConcept C2987255567 @default.
- W3161053278 hasConcept C41008148 @default.
- W3161053278 hasConcept C41895202 @default.
- W3161053278 hasConcept C547195049 @default.
- W3161053278 hasConcept C55493867 @default.
- W3161053278 hasConcept C86803240 @default.
- W3161053278 hasConceptScore W3161053278C104317684 @default.
- W3161053278 hasConceptScore W3161053278C127716648 @default.
- W3161053278 hasConceptScore W3161053278C138885662 @default.
- W3161053278 hasConceptScore W3161053278C154945302 @default.
- W3161053278 hasConceptScore W3161053278C184337299 @default.
- W3161053278 hasConceptScore W3161053278C199360897 @default.
- W3161053278 hasConceptScore W3161053278C204321447 @default.
- W3161053278 hasConceptScore W3161053278C206497026 @default.
- W3161053278 hasConceptScore W3161053278C23123220 @default.
- W3161053278 hasConceptScore W3161053278C2776321320 @default.
- W3161053278 hasConceptScore W3161053278C2987255567 @default.
- W3161053278 hasConceptScore W3161053278C41008148 @default.
- W3161053278 hasConceptScore W3161053278C41895202 @default.
- W3161053278 hasConceptScore W3161053278C547195049 @default.
- W3161053278 hasConceptScore W3161053278C55493867 @default.
- W3161053278 hasConceptScore W3161053278C86803240 @default.
- W3161053278 hasIssue "6" @default.
- W3161053278 hasLocation W31610532781 @default.
- W3161053278 hasLocation W31610532782 @default.