Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161100260> ?p ?o ?g. }
- W3161100260 abstract "Facial expressions recognition (FER) of 3D face scans has received a significant amount of attention in recent years. Most of the facial expression recognition methods have been proposed using mainly 2D images. These methods suffer from several issues like illumination changes and pose variations. Moreover, 2D mapping from 3D images may lack some geometric and topological characteristics of the face. Hence, to overcome this problem, a multi-modal 2D + 3D feature-based method is proposed. We extract shallow features from the 3D images, and deep features using Convolutional Neural Networks (CNN) from the transformed 2D images. Combining these features into a compact representation uses covariance matrices as descriptors for both features instead of single-handedly descriptors. A covariance matrix learning is used as a manifold layer to reduce the deep covariance matrices size and enhance their discrimination power while preserving their manifold structure. We then use the Bag-of-Features (BoF) paradigm to quantize the covariance matrices after flattening. Accordingly, we obtained two codebooks using shallow and deep features. The global codebook is then used to feed an SVM classifier. High classification performances have been achieved on the BU-3DFE and Bosphorus datasets compared to the state-of-the-art methods." @default.
- W3161100260 created "2021-05-24" @default.
- W3161100260 creator A5046160644 @default.
- W3161100260 creator A5066816551 @default.
- W3161100260 creator A5088649053 @default.
- W3161100260 date "2021-05-12" @default.
- W3161100260 modified "2023-09-23" @default.
- W3161100260 title "Deep and Shallow Covariance Feature Quantization for 3D Facial Expression Recognition." @default.
- W3161100260 cites W1566413196 @default.
- W3161100260 cites W1787683252 @default.
- W3161100260 cites W1920022804 @default.
- W3161100260 cites W1992075032 @default.
- W3161100260 cites W1997135319 @default.
- W3161100260 cites W2003238582 @default.
- W3161100260 cites W2021438259 @default.
- W3161100260 cites W2051688810 @default.
- W3161100260 cites W2069190036 @default.
- W3161100260 cites W2077943861 @default.
- W3161100260 cites W2108598243 @default.
- W3161100260 cites W2132902651 @default.
- W3161100260 cites W2137306662 @default.
- W3161100260 cites W2145310492 @default.
- W3161100260 cites W2149652297 @default.
- W3161100260 cites W2156503193 @default.
- W3161100260 cites W2163605009 @default.
- W3161100260 cites W2163864141 @default.
- W3161100260 cites W2228536296 @default.
- W3161100260 cites W2236068269 @default.
- W3161100260 cites W2253728219 @default.
- W3161100260 cites W2279098554 @default.
- W3161100260 cites W2293349265 @default.
- W3161100260 cites W2325939864 @default.
- W3161100260 cites W2339110415 @default.
- W3161100260 cites W2339620988 @default.
- W3161100260 cites W2506506742 @default.
- W3161100260 cites W2560609797 @default.
- W3161100260 cites W2563154851 @default.
- W3161100260 cites W2621864722 @default.
- W3161100260 cites W2625912105 @default.
- W3161100260 cites W2752758619 @default.
- W3161100260 cites W2774147932 @default.
- W3161100260 cites W2806015799 @default.
- W3161100260 cites W2884048435 @default.
- W3161100260 cites W2922554710 @default.
- W3161100260 cites W2944523338 @default.
- W3161100260 cites W2945396119 @default.
- W3161100260 cites W2955056441 @default.
- W3161100260 cites W2963363102 @default.
- W3161100260 cites W2963628672 @default.
- W3161100260 cites W2963728031 @default.
- W3161100260 cites W2963895345 @default.
- W3161100260 cites W2964027736 @default.
- W3161100260 cites W2964068264 @default.
- W3161100260 cites W2964193299 @default.
- W3161100260 cites W2980357078 @default.
- W3161100260 cites W2982345008 @default.
- W3161100260 cites W2986002983 @default.
- W3161100260 cites W3095736896 @default.
- W3161100260 cites W3104885203 @default.
- W3161100260 cites W3147215933 @default.
- W3161100260 cites W820315868 @default.
- W3161100260 hasPublicationYear "2021" @default.
- W3161100260 type Work @default.
- W3161100260 sameAs 3161100260 @default.
- W3161100260 citedByCount "0" @default.
- W3161100260 crossrefType "posted-content" @default.
- W3161100260 hasAuthorship W3161100260A5046160644 @default.
- W3161100260 hasAuthorship W3161100260A5066816551 @default.
- W3161100260 hasAuthorship W3161100260A5088649053 @default.
- W3161100260 hasConcept C105795698 @default.
- W3161100260 hasConcept C108583219 @default.
- W3161100260 hasConcept C11413529 @default.
- W3161100260 hasConcept C12267149 @default.
- W3161100260 hasConcept C127759330 @default.
- W3161100260 hasConcept C138885662 @default.
- W3161100260 hasConcept C153180895 @default.
- W3161100260 hasConcept C154945302 @default.
- W3161100260 hasConcept C178650346 @default.
- W3161100260 hasConcept C185142706 @default.
- W3161100260 hasConcept C195704467 @default.
- W3161100260 hasConcept C2776401178 @default.
- W3161100260 hasConcept C33923547 @default.
- W3161100260 hasConcept C41008148 @default.
- W3161100260 hasConcept C41895202 @default.
- W3161100260 hasConcept C52622490 @default.
- W3161100260 hasConcept C81363708 @default.
- W3161100260 hasConcept C95623464 @default.
- W3161100260 hasConceptScore W3161100260C105795698 @default.
- W3161100260 hasConceptScore W3161100260C108583219 @default.
- W3161100260 hasConceptScore W3161100260C11413529 @default.
- W3161100260 hasConceptScore W3161100260C12267149 @default.
- W3161100260 hasConceptScore W3161100260C127759330 @default.
- W3161100260 hasConceptScore W3161100260C138885662 @default.
- W3161100260 hasConceptScore W3161100260C153180895 @default.
- W3161100260 hasConceptScore W3161100260C154945302 @default.
- W3161100260 hasConceptScore W3161100260C178650346 @default.
- W3161100260 hasConceptScore W3161100260C185142706 @default.
- W3161100260 hasConceptScore W3161100260C195704467 @default.
- W3161100260 hasConceptScore W3161100260C2776401178 @default.
- W3161100260 hasConceptScore W3161100260C33923547 @default.