Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161234532> ?p ?o ?g. }
- W3161234532 endingPage "158" @default.
- W3161234532 startingPage "149" @default.
- W3161234532 abstract "Glioblastoma (GBM) is one of the most common primary brain tumours in adults, with a dismal prognosis despite aggressive multimodality treatment by a combination of surgery and adjuvant radiochemotherapy. A detailed knowledge of the spreading of glioma cells in the brain might allow for more targeted escalated radiotherapy, aiming to reduce locoregional relapse. Recent years have seen the development of a large variety of mathematical modelling approaches to predict glioma migration. The aim of this study is hence to evaluate the clinical applicability of a detailed micro- and meso-scale mathematical model in radiotherapy. First and foremost, a clinical workflow is established, in which the tumour is automatically segmented as input data and then followed in time mathematically based on the diffusion tensor imaging data. The influence of several free model parameters is individually evaluated, then the full model is retrospectively validated for a collective of 3 GBM patients treated at our institution by varying the most important model parameters to achieve optimum agreement with the tumour development during follow-up. Agreement of the model predictions with the real tumour growth as defined by manual contouring based on the follow-up MRI images is analyzed using the dice coefficient. The tumour evolution over 103-212 days follow-up could be predicted by the model with a dice coefficient better than 60% for all three patients. In all cases, the final tumour volume was overestimated by the model by a factor between 1.05 and 1.47. To evaluate the quality of the agreement between the model predictions and the ground truth, we must keep in mind that our gold standard relies on a single observer's (CB) manually-delineated tumour contours. We therefore decided to add a short validation of the stability and reliability of these contours by an inter-observer analysis including three other experienced radiation oncologists from our department. In total, a dice coefficient between 63% and 89% is achieved between the four different observers. Compared with this value, the model predictions (62-66%) perform reasonably well, given the fact that these tumour volumes were created based on the pre-operative segmentation and DTI." @default.
- W3161234532 created "2021-05-24" @default.
- W3161234532 creator A5005872346 @default.
- W3161234532 creator A5011671256 @default.
- W3161234532 creator A5019687463 @default.
- W3161234532 creator A5021920383 @default.
- W3161234532 creator A5023138468 @default.
- W3161234532 creator A5031205010 @default.
- W3161234532 creator A5042044192 @default.
- W3161234532 creator A5045650071 @default.
- W3161234532 creator A5046351120 @default.
- W3161234532 creator A5053035326 @default.
- W3161234532 creator A5058316194 @default.
- W3161234532 creator A5080335893 @default.
- W3161234532 creator A5083989030 @default.
- W3161234532 creator A5089277608 @default.
- W3161234532 date "2022-05-01" @default.
- W3161234532 modified "2023-10-16" @default.
- W3161234532 title "Feasibility and clinical usefulness of modelling glioblastoma migration in adjuvant radiotherapy" @default.
- W3161234532 cites W1530030810 @default.
- W3161234532 cites W1558633536 @default.
- W3161234532 cites W1905952818 @default.
- W3161234532 cites W1971593855 @default.
- W3161234532 cites W1976385916 @default.
- W3161234532 cites W1980556389 @default.
- W3161234532 cites W1987869189 @default.
- W3161234532 cites W1988987428 @default.
- W3161234532 cites W2019746097 @default.
- W3161234532 cites W2055272161 @default.
- W3161234532 cites W2072397543 @default.
- W3161234532 cites W2076234826 @default.
- W3161234532 cites W2115046420 @default.
- W3161234532 cites W2122608403 @default.
- W3161234532 cites W2140157574 @default.
- W3161234532 cites W2158681922 @default.
- W3161234532 cites W2165871546 @default.
- W3161234532 cites W2283368156 @default.
- W3161234532 cites W2323421288 @default.
- W3161234532 cites W2359037794 @default.
- W3161234532 cites W2468499821 @default.
- W3161234532 cites W2472509407 @default.
- W3161234532 cites W2487638675 @default.
- W3161234532 cites W2568269535 @default.
- W3161234532 cites W2756406795 @default.
- W3161234532 cites W2778283729 @default.
- W3161234532 cites W2796424924 @default.
- W3161234532 cites W2887368347 @default.
- W3161234532 cites W2889167864 @default.
- W3161234532 cites W2911015120 @default.
- W3161234532 cites W2959177618 @default.
- W3161234532 cites W2961505248 @default.
- W3161234532 cites W2963755269 @default.
- W3161234532 cites W2996976931 @default.
- W3161234532 cites W3104604121 @default.
- W3161234532 doi "https://doi.org/10.1016/j.zemedi.2021.03.004" @default.
- W3161234532 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33966944" @default.
- W3161234532 hasPublicationYear "2022" @default.
- W3161234532 type Work @default.
- W3161234532 sameAs 3161234532 @default.
- W3161234532 citedByCount "3" @default.
- W3161234532 countsByYear W31612345322022 @default.
- W3161234532 countsByYear W31612345322023 @default.
- W3161234532 crossrefType "journal-article" @default.
- W3161234532 hasAuthorship W3161234532A5005872346 @default.
- W3161234532 hasAuthorship W3161234532A5011671256 @default.
- W3161234532 hasAuthorship W3161234532A5019687463 @default.
- W3161234532 hasAuthorship W3161234532A5021920383 @default.
- W3161234532 hasAuthorship W3161234532A5023138468 @default.
- W3161234532 hasAuthorship W3161234532A5031205010 @default.
- W3161234532 hasAuthorship W3161234532A5042044192 @default.
- W3161234532 hasAuthorship W3161234532A5045650071 @default.
- W3161234532 hasAuthorship W3161234532A5046351120 @default.
- W3161234532 hasAuthorship W3161234532A5053035326 @default.
- W3161234532 hasAuthorship W3161234532A5058316194 @default.
- W3161234532 hasAuthorship W3161234532A5080335893 @default.
- W3161234532 hasAuthorship W3161234532A5083989030 @default.
- W3161234532 hasAuthorship W3161234532A5089277608 @default.
- W3161234532 hasBestOaLocation W31612345321 @default.
- W3161234532 hasConcept C105795698 @default.
- W3161234532 hasConcept C121684516 @default.
- W3161234532 hasConcept C124504099 @default.
- W3161234532 hasConcept C126838900 @default.
- W3161234532 hasConcept C143409427 @default.
- W3161234532 hasConcept C149550507 @default.
- W3161234532 hasConcept C154945302 @default.
- W3161234532 hasConcept C163892561 @default.
- W3161234532 hasConcept C19527891 @default.
- W3161234532 hasConcept C22029948 @default.
- W3161234532 hasConcept C2776194525 @default.
- W3161234532 hasConcept C2778227246 @default.
- W3161234532 hasConcept C2779104521 @default.
- W3161234532 hasConcept C2780920918 @default.
- W3161234532 hasConcept C3018454096 @default.
- W3161234532 hasConcept C33923547 @default.
- W3161234532 hasConcept C41008148 @default.
- W3161234532 hasConcept C502942594 @default.
- W3161234532 hasConcept C509974204 @default.
- W3161234532 hasConcept C71924100 @default.