Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161235909> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3161235909 abstract "Data collected from social media such as tweets, posts, and blogs can assist in an early indication of market sentiment in the financial field. This has frequently been conducted on Twitter data in particular. Using data mining techniques, opinion mining, machine learning, natural language processing (NLP), and knowledge management, the underlying public mood states and sentiment can be uncovered. As cryptocurrencies play an increasingly significant role in global economies, there is an evident relationship between Twitter sentiment and future price fluctuations in Bitcoin. This paper assesses Tweets' collection, manipulation, and interpretation to predict early market movements of cryptocurrency. More specifically, sentiment analysis and text mining methods, including Logistic Regressions, Binary Classified Vector Prediction, Support Vector Mechanism, and Naive Bayes, were considered. Each model was evaluated on their ability to predict public mood states as measured by `tweets' from Twitter during the era of covid-19. An XGBoost-Composite ensemble model is constructed, which achieved higher performance than the state-of-the-art prediction models." @default.
- W3161235909 created "2021-05-24" @default.
- W3161235909 creator A5018607973 @default.
- W3161235909 date "2021-04-21" @default.
- W3161235909 modified "2023-09-26" @default.
- W3161235909 title "Forecasting the Early Market Movement in Bitcoin Using Twitter's Sentiment Analysis: An Ensemble-based Prediction Model" @default.
- W3161235909 cites W2087473803 @default.
- W3161235909 cites W2120498775 @default.
- W3161235909 cites W2808079449 @default.
- W3161235909 cites W2886444838 @default.
- W3161235909 cites W2901808462 @default.
- W3161235909 cites W2912818077 @default.
- W3161235909 cites W2963763078 @default.
- W3161235909 cites W2994336366 @default.
- W3161235909 cites W3011605097 @default.
- W3161235909 cites W3026436349 @default.
- W3161235909 cites W3036389052 @default.
- W3161235909 cites W3046639328 @default.
- W3161235909 cites W3055634833 @default.
- W3161235909 cites W3087872637 @default.
- W3161235909 cites W3088587179 @default.
- W3161235909 cites W3091769066 @default.
- W3161235909 cites W3092643782 @default.
- W3161235909 cites W3093171418 @default.
- W3161235909 cites W3093352713 @default.
- W3161235909 cites W3097103183 @default.
- W3161235909 cites W3097342189 @default.
- W3161235909 cites W3100909980 @default.
- W3161235909 cites W3106595551 @default.
- W3161235909 cites W3119157379 @default.
- W3161235909 cites W3120082291 @default.
- W3161235909 doi "https://doi.org/10.1109/iemtronics52119.2021.9422647" @default.
- W3161235909 hasPublicationYear "2021" @default.
- W3161235909 type Work @default.
- W3161235909 sameAs 3161235909 @default.
- W3161235909 citedByCount "2" @default.
- W3161235909 countsByYear W31612359092022 @default.
- W3161235909 countsByYear W31612359092023 @default.
- W3161235909 crossrefType "proceedings-article" @default.
- W3161235909 hasAuthorship W3161235909A5018607973 @default.
- W3161235909 hasConcept C119857082 @default.
- W3161235909 hasConcept C12267149 @default.
- W3161235909 hasConcept C124101348 @default.
- W3161235909 hasConcept C136764020 @default.
- W3161235909 hasConcept C154945302 @default.
- W3161235909 hasConcept C180706569 @default.
- W3161235909 hasConcept C202444582 @default.
- W3161235909 hasConcept C2522767166 @default.
- W3161235909 hasConcept C33923547 @default.
- W3161235909 hasConcept C41008148 @default.
- W3161235909 hasConcept C518677369 @default.
- W3161235909 hasConcept C52001869 @default.
- W3161235909 hasConcept C66402592 @default.
- W3161235909 hasConcept C75684735 @default.
- W3161235909 hasConcept C9652623 @default.
- W3161235909 hasConceptScore W3161235909C119857082 @default.
- W3161235909 hasConceptScore W3161235909C12267149 @default.
- W3161235909 hasConceptScore W3161235909C124101348 @default.
- W3161235909 hasConceptScore W3161235909C136764020 @default.
- W3161235909 hasConceptScore W3161235909C154945302 @default.
- W3161235909 hasConceptScore W3161235909C180706569 @default.
- W3161235909 hasConceptScore W3161235909C202444582 @default.
- W3161235909 hasConceptScore W3161235909C2522767166 @default.
- W3161235909 hasConceptScore W3161235909C33923547 @default.
- W3161235909 hasConceptScore W3161235909C41008148 @default.
- W3161235909 hasConceptScore W3161235909C518677369 @default.
- W3161235909 hasConceptScore W3161235909C52001869 @default.
- W3161235909 hasConceptScore W3161235909C66402592 @default.
- W3161235909 hasConceptScore W3161235909C75684735 @default.
- W3161235909 hasConceptScore W3161235909C9652623 @default.
- W3161235909 hasLocation W31612359091 @default.
- W3161235909 hasOpenAccess W3161235909 @default.
- W3161235909 hasPrimaryLocation W31612359091 @default.
- W3161235909 hasRelatedWork W2548274677 @default.
- W3161235909 hasRelatedWork W2595988085 @default.
- W3161235909 hasRelatedWork W2785614396 @default.
- W3161235909 hasRelatedWork W2979979539 @default.
- W3161235909 hasRelatedWork W3149206686 @default.
- W3161235909 hasRelatedWork W4205958290 @default.
- W3161235909 hasRelatedWork W4299638067 @default.
- W3161235909 hasRelatedWork W4312733094 @default.
- W3161235909 hasRelatedWork W4313043464 @default.
- W3161235909 hasRelatedWork W4323310348 @default.
- W3161235909 isParatext "false" @default.
- W3161235909 isRetracted "false" @default.
- W3161235909 magId "3161235909" @default.
- W3161235909 workType "article" @default.