Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161236107> ?p ?o ?g. }
- W3161236107 abstract "<sec> <title>BACKGROUND</title> Clear language makes communication easier between any two parties. A layman may have difficulty communicating with a professional due to not understanding the specialized terms common to the domain. In healthcare, it is rare to find a layman knowledgeable in medical jargon which can lead to poor understanding of their condition and/or treatment. To bridge this gap, several professional vocabularies and ontologies have been created to map laymen medical terms to professional medical terms and vice versa. </sec> <sec> <title>OBJECTIVE</title> Many of the presented vocabularies are built manually or semi-automatically requiring large investments of time and human effort and consequently the slow growth of these vocabularies. In this paper, we present an automatic method to enrich laymen's vocabularies that has the benefit of being able to be applied to vocabularies in any domain. </sec> <sec> <title>METHODS</title> Our entirely automatic approach uses machine learning, specifically Global Vectors for Word Embeddings (GloVe), on a corpus collected from a social media healthcare platform to extend and enhance consumer health vocabularies (CHV). Our approach further improves the CHV by incorporating synonyms and hyponyms from the WordNet ontology. The basic GloVe and our novel algorithms incorporating WordNet were evaluated using two laymen datasets from the National Library of Medicine (NLM), Open-Access Consumer Health Vocabulary (OAC CHV) and MedlinePlus Healthcare Vocabulary. </sec> <sec> <title>RESULTS</title> The results show that GloVe was able to find new laymen terms with an F-score of 48.44%. Furthermore, our enhanced GloVe approach outperformed basic GloVe with an average F-score of 61%, a relative improvement of 25%. </sec> <sec> <title>CONCLUSIONS</title> This paper presents an automatic approach to enrich consumer health vocabularies using the GloVe word embeddings and an auxiliary lexical source, WordNet. Our approach was evaluated used a healthcare text downloaded from MedHelp.org, a healthcare social media platform using two standard laymen vocabularies, OAC CHV, and MedlinePlus. We used the WordNet ontology to expand the healthcare corpus by including synonyms, hyponyms, and hypernyms for each CHV layman term occurrence in the corpus. Given a seed term selected from a concept in the ontology, we measured our algorithms’ ability to automatically extract synonyms for those terms that appeared in the ground truth concept. We found that enhanced GloVe outperformed GloVe with a relative improvement of 25% in the F-score. </sec>" @default.
- W3161236107 created "2021-05-24" @default.
- W3161236107 creator A5032138644 @default.
- W3161236107 creator A5037149109 @default.
- W3161236107 creator A5060467202 @default.
- W3161236107 creator A5086442315 @default.
- W3161236107 date "2020-11-30" @default.
- W3161236107 modified "2023-09-23" @default.
- W3161236107 title "An Automated Method To Enrich Consumer Health Vocabularies Using GloVe Word Embeddings and An Auxiliary Lexical Resource (Preprint)" @default.
- W3161236107 cites W136956327 @default.
- W3161236107 cites W1502275721 @default.
- W3161236107 cites W1516247445 @default.
- W3161236107 cites W1575471463 @default.
- W3161236107 cites W1665997306 @default.
- W3161236107 cites W1772637012 @default.
- W3161236107 cites W1841433433 @default.
- W3161236107 cites W1880262756 @default.
- W3161236107 cites W1931294762 @default.
- W3161236107 cites W1945950296 @default.
- W3161236107 cites W1988988036 @default.
- W3161236107 cites W2011938319 @default.
- W3161236107 cites W2017551578 @default.
- W3161236107 cites W2024051683 @default.
- W3161236107 cites W2028742638 @default.
- W3161236107 cites W2057620292 @default.
- W3161236107 cites W2066378307 @default.
- W3161236107 cites W2081580037 @default.
- W3161236107 cites W2096561521 @default.
- W3161236107 cites W2099307202 @default.
- W3161236107 cites W2103359476 @default.
- W3161236107 cites W2116776210 @default.
- W3161236107 cites W2118981008 @default.
- W3161236107 cites W2120699290 @default.
- W3161236107 cites W2120717426 @default.
- W3161236107 cites W2124957697 @default.
- W3161236107 cites W2127203709 @default.
- W3161236107 cites W2132232128 @default.
- W3161236107 cites W2133109597 @default.
- W3161236107 cites W2139215878 @default.
- W3161236107 cites W2140677962 @default.
- W3161236107 cites W2141599568 @default.
- W3161236107 cites W2147152072 @default.
- W3161236107 cites W2148572968 @default.
- W3161236107 cites W2150451032 @default.
- W3161236107 cites W2153579005 @default.
- W3161236107 cites W2156927361 @default.
- W3161236107 cites W2159092541 @default.
- W3161236107 cites W2183771419 @default.
- W3161236107 cites W2250539671 @default.
- W3161236107 cites W2251157338 @default.
- W3161236107 cites W2271628775 @default.
- W3161236107 cites W2325811289 @default.
- W3161236107 cites W237047597 @default.
- W3161236107 cites W2384955403 @default.
- W3161236107 cites W2404369708 @default.
- W3161236107 cites W2405317410 @default.
- W3161236107 cites W2493916176 @default.
- W3161236107 cites W2546257607 @default.
- W3161236107 cites W2599664447 @default.
- W3161236107 cites W2764255325 @default.
- W3161236107 cites W2770613891 @default.
- W3161236107 cites W2793567354 @default.
- W3161236107 cites W2805878970 @default.
- W3161236107 cites W2808598571 @default.
- W3161236107 cites W2906716127 @default.
- W3161236107 cites W2915161943 @default.
- W3161236107 cites W2922782871 @default.
- W3161236107 cites W2933094324 @default.
- W3161236107 cites W2950225692 @default.
- W3161236107 cites W2950577311 @default.
- W3161236107 cites W2952837147 @default.
- W3161236107 cites W2963126915 @default.
- W3161236107 cites W3005971956 @default.
- W3161236107 cites W3012373507 @default.
- W3161236107 cites W3014250041 @default.
- W3161236107 cites W3014777240 @default.
- W3161236107 cites W3035434194 @default.
- W3161236107 cites W3105440105 @default.
- W3161236107 cites W376466135 @default.
- W3161236107 cites W46659105 @default.
- W3161236107 cites W8870360 @default.
- W3161236107 cites W90362830 @default.
- W3161236107 doi "https://doi.org/10.2196/preprints.26160" @default.
- W3161236107 hasPublicationYear "2020" @default.
- W3161236107 type Work @default.
- W3161236107 sameAs 3161236107 @default.
- W3161236107 citedByCount "0" @default.
- W3161236107 crossrefType "posted-content" @default.
- W3161236107 hasAuthorship W3161236107A5032138644 @default.
- W3161236107 hasAuthorship W3161236107A5037149109 @default.
- W3161236107 hasAuthorship W3161236107A5060467202 @default.
- W3161236107 hasAuthorship W3161236107A5086442315 @default.
- W3161236107 hasBestOaLocation W31612361072 @default.
- W3161236107 hasConcept C110615152 @default.
- W3161236107 hasConcept C134306372 @default.
- W3161236107 hasConcept C136764020 @default.
- W3161236107 hasConcept C138885662 @default.
- W3161236107 hasConcept C154945302 @default.
- W3161236107 hasConcept C157659113 @default.
- W3161236107 hasConcept C160735492 @default.