Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161447300> ?p ?o ?g. }
- W3161447300 endingPage "75230" @default.
- W3161447300 startingPage "75211" @default.
- W3161447300 abstract "Shape-from-Template (SfT) solves the registration and 3D reconstruction of a deformable 3D object, represented by the template, from a single image. Recently, methods based on deep learning have been able to solve SfT for the wide-baseline case in real-time, clearly surpassing classical methods. However, the main limitation of current methods is the need for fine tuning of the neural models to a specific geometry and appearance represented by the template texture map. We propose the first texture-generic deep learning SfT method which adapts to new texture maps at run-time, without the need for texture specific fine tuning. We achieve this by dividing the problem into a segmentation step and a registration and reconstruction step, both solved with deep learning. We include the template texture map as one of the neural inputs in both steps, training our models to adapt to different ones. We show that our method obtains comparable or better results to previous deep learning models, which are texture specific. It works in challenging imaging conditions, including complex deformations, occlusions, motion blur and poor textures. Our implementation runs in real-time, with a low-cost GPU and CPU." @default.
- W3161447300 created "2021-05-24" @default.
- W3161447300 creator A5014421885 @default.
- W3161447300 creator A5014952217 @default.
- W3161447300 creator A5027206821 @default.
- W3161447300 creator A5031022520 @default.
- W3161447300 creator A5062651793 @default.
- W3161447300 date "2021-01-01" @default.
- W3161447300 modified "2023-10-18" @default.
- W3161447300 title "Texture-Generic Deep Shape-From-Template" @default.
- W3161447300 cites W1537530125 @default.
- W3161447300 cites W1677409904 @default.
- W3161447300 cites W1803059841 @default.
- W3161447300 cites W1905829557 @default.
- W3161447300 cites W1906917228 @default.
- W3161447300 cites W1915221348 @default.
- W3161447300 cites W1921575874 @default.
- W3161447300 cites W1939266004 @default.
- W3161447300 cites W1998989074 @default.
- W3161447300 cites W1999264281 @default.
- W3161447300 cites W2000210898 @default.
- W3161447300 cites W2025599623 @default.
- W3161447300 cites W2031614119 @default.
- W3161447300 cites W2047684811 @default.
- W3161447300 cites W2054511765 @default.
- W3161447300 cites W2082989281 @default.
- W3161447300 cites W2088900880 @default.
- W3161447300 cites W2091375548 @default.
- W3161447300 cites W2101346088 @default.
- W3161447300 cites W2103559027 @default.
- W3161447300 cites W2112009428 @default.
- W3161447300 cites W2113325037 @default.
- W3161447300 cites W2115507602 @default.
- W3161447300 cites W2121717851 @default.
- W3161447300 cites W2143546616 @default.
- W3161447300 cites W2150545569 @default.
- W3161447300 cites W2151103935 @default.
- W3161447300 cites W2194775991 @default.
- W3161447300 cites W2205997434 @default.
- W3161447300 cites W2251436415 @default.
- W3161447300 cites W2300779272 @default.
- W3161447300 cites W2319845836 @default.
- W3161447300 cites W2346663546 @default.
- W3161447300 cites W2527436263 @default.
- W3161447300 cites W2546534188 @default.
- W3161447300 cites W2557065683 @default.
- W3161447300 cites W2560474170 @default.
- W3161447300 cites W2738185184 @default.
- W3161447300 cites W2753858305 @default.
- W3161447300 cites W2798302325 @default.
- W3161447300 cites W2883983474 @default.
- W3161447300 cites W2903516498 @default.
- W3161447300 cites W2913429812 @default.
- W3161447300 cites W2962771259 @default.
- W3161447300 cites W2962999795 @default.
- W3161447300 cites W2963876278 @default.
- W3161447300 cites W2963888409 @default.
- W3161447300 cites W3011016216 @default.
- W3161447300 cites W3013474837 @default.
- W3161447300 cites W3097139398 @default.
- W3161447300 cites W764651262 @default.
- W3161447300 doi "https://doi.org/10.1109/access.2021.3082011" @default.
- W3161447300 hasPublicationYear "2021" @default.
- W3161447300 type Work @default.
- W3161447300 sameAs 3161447300 @default.
- W3161447300 citedByCount "4" @default.
- W3161447300 countsByYear W31614473002022 @default.
- W3161447300 countsByYear W31614473002023 @default.
- W3161447300 crossrefType "journal-article" @default.
- W3161447300 hasAuthorship W3161447300A5014421885 @default.
- W3161447300 hasAuthorship W3161447300A5014952217 @default.
- W3161447300 hasAuthorship W3161447300A5027206821 @default.
- W3161447300 hasAuthorship W3161447300A5031022520 @default.
- W3161447300 hasAuthorship W3161447300A5062651793 @default.
- W3161447300 hasBestOaLocation W31614473001 @default.
- W3161447300 hasConcept C108583219 @default.
- W3161447300 hasConcept C115961682 @default.
- W3161447300 hasConcept C124504099 @default.
- W3161447300 hasConcept C144743038 @default.
- W3161447300 hasConcept C153180895 @default.
- W3161447300 hasConcept C154945302 @default.
- W3161447300 hasConcept C200585589 @default.
- W3161447300 hasConcept C2777708103 @default.
- W3161447300 hasConcept C2781195486 @default.
- W3161447300 hasConcept C31972630 @default.
- W3161447300 hasConcept C41008148 @default.
- W3161447300 hasConcept C50494287 @default.
- W3161447300 hasConcept C50644808 @default.
- W3161447300 hasConcept C63099799 @default.
- W3161447300 hasConcept C89600930 @default.
- W3161447300 hasConceptScore W3161447300C108583219 @default.
- W3161447300 hasConceptScore W3161447300C115961682 @default.
- W3161447300 hasConceptScore W3161447300C124504099 @default.
- W3161447300 hasConceptScore W3161447300C144743038 @default.
- W3161447300 hasConceptScore W3161447300C153180895 @default.
- W3161447300 hasConceptScore W3161447300C154945302 @default.
- W3161447300 hasConceptScore W3161447300C200585589 @default.
- W3161447300 hasConceptScore W3161447300C2777708103 @default.