Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161564668> ?p ?o ?g. }
- W3161564668 abstract "In this paper, we address two long-standing radio-genomic challenges in glioma subtype and survival prediction: (1) how to leverage large amounts of unlabeled magnetic resonance (MR) imaging data and (2) how to unite MR data and genomic data. We propose a novel application of multi-task learning (MTL) that leverages unlabeled MR data by jointly learning an auxiliary tumor segmentation task with glioma subtype prediction and that can learn from patients with and without genomic data. We analyze multi-parametric MR data from 542 patients in the combined training, validation, and testing sets of the 2018 Multimodal Brain Tumor Segmentation Challenge and somatic copy number alteration (SCNA) data from 1090 patients in The Cancer Genome Atlas' (TCGA) lower-grade glioma and glioblastoma projects. Our MTL model significantly outperforms comparable classification models trained only on labeled MR data for both IDH1/2 mutation and 1p/19q co-deletion subtype prediction tasks. We also show that embeddings produced by our MTL models improve survival predictions beyond MR or SCNA on their own. Our code is available at https://github.com/nknuecht/glioma_mtl." @default.
- W3161564668 created "2021-05-24" @default.
- W3161564668 creator A5028849793 @default.
- W3161564668 creator A5033683673 @default.
- W3161564668 creator A5074132108 @default.
- W3161564668 creator A5076121553 @default.
- W3161564668 creator A5076889165 @default.
- W3161564668 creator A5077343004 @default.
- W3161564668 date "2021-01-10" @default.
- W3161564668 modified "2023-09-24" @default.
- W3161564668 title "Leveraging Unlabeled Data for Glioma Molecular Subtype and Survival Prediction" @default.
- W3161564668 cites W1580788756 @default.
- W3161564668 cites W1641498739 @default.
- W3161564668 cites W1901129140 @default.
- W3161564668 cites W2025183726 @default.
- W3161564668 cites W2056753605 @default.
- W3161564668 cites W2095868657 @default.
- W3161564668 cites W2097475056 @default.
- W3161564668 cites W2105528101 @default.
- W3161564668 cites W2143104527 @default.
- W3161564668 cites W2144753404 @default.
- W3161564668 cites W2161289668 @default.
- W3161564668 cites W2174661749 @default.
- W3161564668 cites W2366536035 @default.
- W3161564668 cites W2465688795 @default.
- W3161564668 cites W2519238003 @default.
- W3161564668 cites W2531051695 @default.
- W3161564668 cites W2594633041 @default.
- W3161564668 cites W2595668780 @default.
- W3161564668 cites W2618667624 @default.
- W3161564668 cites W2734369741 @default.
- W3161564668 cites W2743501370 @default.
- W3161564668 cites W2751069891 @default.
- W3161564668 cites W2751538714 @default.
- W3161564668 cites W2757838129 @default.
- W3161564668 cites W2767145937 @default.
- W3161564668 cites W2770261599 @default.
- W3161564668 cites W2786672974 @default.
- W3161564668 cites W2788833028 @default.
- W3161564668 cites W2793653887 @default.
- W3161564668 cites W2802159733 @default.
- W3161564668 cites W2810621202 @default.
- W3161564668 cites W2887570919 @default.
- W3161564668 cites W2890044169 @default.
- W3161564668 cites W2897228009 @default.
- W3161564668 cites W2897449417 @default.
- W3161564668 cites W2900298334 @default.
- W3161564668 cites W2901372644 @default.
- W3161564668 cites W2913340405 @default.
- W3161564668 cites W2913425791 @default.
- W3161564668 cites W2963150697 @default.
- W3161564668 cites W2963418739 @default.
- W3161564668 cites W2996374649 @default.
- W3161564668 cites W2997384822 @default.
- W3161564668 cites W3004476491 @default.
- W3161564668 cites W3091905774 @default.
- W3161564668 doi "https://doi.org/10.1109/icpr48806.2021.9413302" @default.
- W3161564668 hasPublicationYear "2021" @default.
- W3161564668 type Work @default.
- W3161564668 sameAs 3161564668 @default.
- W3161564668 citedByCount "0" @default.
- W3161564668 crossrefType "proceedings-article" @default.
- W3161564668 hasAuthorship W3161564668A5028849793 @default.
- W3161564668 hasAuthorship W3161564668A5033683673 @default.
- W3161564668 hasAuthorship W3161564668A5074132108 @default.
- W3161564668 hasAuthorship W3161564668A5076121553 @default.
- W3161564668 hasAuthorship W3161564668A5076889165 @default.
- W3161564668 hasAuthorship W3161564668A5077343004 @default.
- W3161564668 hasConcept C104317684 @default.
- W3161564668 hasConcept C126838900 @default.
- W3161564668 hasConcept C141231307 @default.
- W3161564668 hasConcept C143409427 @default.
- W3161564668 hasConcept C153083717 @default.
- W3161564668 hasConcept C153180895 @default.
- W3161564668 hasConcept C154945302 @default.
- W3161564668 hasConcept C169760540 @default.
- W3161564668 hasConcept C189206191 @default.
- W3161564668 hasConcept C2778227246 @default.
- W3161564668 hasConcept C41008148 @default.
- W3161564668 hasConcept C502942594 @default.
- W3161564668 hasConcept C54355233 @default.
- W3161564668 hasConcept C58693492 @default.
- W3161564668 hasConcept C70721500 @default.
- W3161564668 hasConcept C71924100 @default.
- W3161564668 hasConcept C86803240 @default.
- W3161564668 hasConcept C89600930 @default.
- W3161564668 hasConceptScore W3161564668C104317684 @default.
- W3161564668 hasConceptScore W3161564668C126838900 @default.
- W3161564668 hasConceptScore W3161564668C141231307 @default.
- W3161564668 hasConceptScore W3161564668C143409427 @default.
- W3161564668 hasConceptScore W3161564668C153083717 @default.
- W3161564668 hasConceptScore W3161564668C153180895 @default.
- W3161564668 hasConceptScore W3161564668C154945302 @default.
- W3161564668 hasConceptScore W3161564668C169760540 @default.
- W3161564668 hasConceptScore W3161564668C189206191 @default.
- W3161564668 hasConceptScore W3161564668C2778227246 @default.
- W3161564668 hasConceptScore W3161564668C41008148 @default.
- W3161564668 hasConceptScore W3161564668C502942594 @default.
- W3161564668 hasConceptScore W3161564668C54355233 @default.
- W3161564668 hasConceptScore W3161564668C58693492 @default.