Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161569253> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3161569253 abstract "Heart Disease is one of the fatal causes of worldwide death in also third world countries like Bangladesh. Though heart disease prediction with a satisfactory accuracy level is a very demanding and challenging topic, it is achievable using advanced machine learning (ML) techniques. Manufacturing a proper ML system can not only predict cardiovascular disease with high accuracy but also can reduce human intervention, the requirement of extra medical tests. Quick prediction can deduct the death rate and severity of the disease. This paper describes our proposed methodology of predicting heart disease that targets a goal of finding important features by applying ML algorithms resulting in improving the accuracy of the prediction. Instead of collecting the dataset from the online repository, we collected data from the Sylhet region of Bangladesh by physically going to door-to-door hospitals and healthcare industries to make an appropriate questionnaire and to produce the most valuable dataset related to heart disease prediction. Our dataset consists of 564 instances and 18 attributes. We trained our model using classification algorithms like Decision Tree, Logistic Regression, K-Nearest Neighbors (KNN), Naive Bayes, Support Vector Machine (SVM), etc. Though accuracy for different algorithms varies for a different number of instances in the dataset, SVM yielded the best performance with an accuracy level of 91% for the threshold instances of the dataset in our proposed system." @default.
- W3161569253 created "2021-05-24" @default.
- W3161569253 creator A5035540736 @default.
- W3161569253 creator A5037906230 @default.
- W3161569253 creator A5062116498 @default.
- W3161569253 creator A5084032742 @default.
- W3161569253 date "2021-04-02" @default.
- W3161569253 modified "2023-09-23" @default.
- W3161569253 title "Heart Disease Prognosis Using Machine Learning Classification Techniques" @default.
- W3161569253 cites W1995625741 @default.
- W3161569253 cites W2062302861 @default.
- W3161569253 cites W2070590796 @default.
- W3161569253 cites W2592717708 @default.
- W3161569253 cites W2790256058 @default.
- W3161569253 cites W2892661219 @default.
- W3161569253 cites W2949767632 @default.
- W3161569253 doi "https://doi.org/10.1109/i2ct51068.2021.9418181" @default.
- W3161569253 hasPublicationYear "2021" @default.
- W3161569253 type Work @default.
- W3161569253 sameAs 3161569253 @default.
- W3161569253 citedByCount "7" @default.
- W3161569253 countsByYear W31615692532022 @default.
- W3161569253 countsByYear W31615692532023 @default.
- W3161569253 crossrefType "proceedings-article" @default.
- W3161569253 hasAuthorship W3161569253A5035540736 @default.
- W3161569253 hasAuthorship W3161569253A5037906230 @default.
- W3161569253 hasAuthorship W3161569253A5062116498 @default.
- W3161569253 hasAuthorship W3161569253A5084032742 @default.
- W3161569253 hasConcept C110083411 @default.
- W3161569253 hasConcept C119857082 @default.
- W3161569253 hasConcept C12267149 @default.
- W3161569253 hasConcept C124101348 @default.
- W3161569253 hasConcept C142724271 @default.
- W3161569253 hasConcept C151956035 @default.
- W3161569253 hasConcept C154945302 @default.
- W3161569253 hasConcept C164705383 @default.
- W3161569253 hasConcept C2779134260 @default.
- W3161569253 hasConcept C2780074459 @default.
- W3161569253 hasConcept C41008148 @default.
- W3161569253 hasConcept C45804977 @default.
- W3161569253 hasConcept C52001869 @default.
- W3161569253 hasConcept C71924100 @default.
- W3161569253 hasConcept C84525736 @default.
- W3161569253 hasConceptScore W3161569253C110083411 @default.
- W3161569253 hasConceptScore W3161569253C119857082 @default.
- W3161569253 hasConceptScore W3161569253C12267149 @default.
- W3161569253 hasConceptScore W3161569253C124101348 @default.
- W3161569253 hasConceptScore W3161569253C142724271 @default.
- W3161569253 hasConceptScore W3161569253C151956035 @default.
- W3161569253 hasConceptScore W3161569253C154945302 @default.
- W3161569253 hasConceptScore W3161569253C164705383 @default.
- W3161569253 hasConceptScore W3161569253C2779134260 @default.
- W3161569253 hasConceptScore W3161569253C2780074459 @default.
- W3161569253 hasConceptScore W3161569253C41008148 @default.
- W3161569253 hasConceptScore W3161569253C45804977 @default.
- W3161569253 hasConceptScore W3161569253C52001869 @default.
- W3161569253 hasConceptScore W3161569253C71924100 @default.
- W3161569253 hasConceptScore W3161569253C84525736 @default.
- W3161569253 hasLocation W31615692531 @default.
- W3161569253 hasOpenAccess W3161569253 @default.
- W3161569253 hasPrimaryLocation W31615692531 @default.
- W3161569253 hasRelatedWork W2940647699 @default.
- W3161569253 hasRelatedWork W3143658565 @default.
- W3161569253 hasRelatedWork W3186233728 @default.
- W3161569253 hasRelatedWork W4211090192 @default.
- W3161569253 hasRelatedWork W4283372235 @default.
- W3161569253 hasRelatedWork W4312885285 @default.
- W3161569253 hasRelatedWork W4321636153 @default.
- W3161569253 hasRelatedWork W4377964522 @default.
- W3161569253 hasRelatedWork W4383535405 @default.
- W3161569253 hasRelatedWork W4386462655 @default.
- W3161569253 isParatext "false" @default.
- W3161569253 isRetracted "false" @default.
- W3161569253 magId "3161569253" @default.
- W3161569253 workType "article" @default.