Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161585833> ?p ?o ?g. }
- W3161585833 endingPage "17564" @default.
- W3161585833 startingPage "17556" @default.
- W3161585833 abstract "Polysomnography (PSG) is the gold-standard for sleep apnea and hypopnea syndrome (SAHS) diagnosis. Because the PSG system is not suitable for long-term continuous use owing to the high cost and discomfort caused by attached multi-channel sensors, alternative methods using a non-contact sensor have been investigated. However, the existing methods have limitations in that the radar-person distance is fixed, and the detected apnea hypopnea (AH) event cannot be provided in real-time. In this paper, therefore, we propose a novel approach for real-time AH event detection with impulse-radio ultra-wideband (IR-UWB) radar using a deep learning model. 36 PSG recordings and simultaneously measured IR-UWB radar data were used in the experiments. After the clutter was removed, IR-UWB radar images were segmented by sliding a 20-s window at 1-s shift, and categorized into two classes: AH and N. A hybrid model combining the convolutional neural networks and long short-term memory networks was trained with the data, which consisted of class-balanced segments. Time sequenced classified outputs were then fed to an event detector to identify valid AH events. Therefore, the proposed method showed a Cohen’s kappa coefficient of 0.728, sensitivity of 0.781, specificity of 0.956, and an accuracy of 0.930. According to the apnea-hypopnea index (AHI) estimation analysis, the Pearson’s correlation coefficient between the estimated AHI and reference AHI was 0.97. In addition, the average accuracy and kappa of SAHS diagnosis was 0.98 and 0.96, respectively, for AHI cutoffs of ≥ 5, 15, and 30 events/h. The proposed method achieved the state-of-the-art performance for classifying SAHS severity without any hand-engineered feature regardless of the user’s location. Our approach can be utilized for a cost-effective and reliable SAHS monitoring system in a home environment." @default.
- W3161585833 created "2021-05-24" @default.
- W3161585833 creator A5002026238 @default.
- W3161585833 creator A5002794907 @default.
- W3161585833 creator A5008454274 @default.
- W3161585833 creator A5019790169 @default.
- W3161585833 creator A5039034135 @default.
- W3161585833 creator A5040423887 @default.
- W3161585833 creator A5062444385 @default.
- W3161585833 creator A5065376302 @default.
- W3161585833 date "2022-01-01" @default.
- W3161585833 modified "2023-10-14" @default.
- W3161585833 title "Hybrid CNN-LSTM Network for Real-Time Apnea-Hypopnea Event Detection Based on IR-UWB Radar" @default.
- W3161585833 cites W1648513956 @default.
- W3161585833 cites W1677182931 @default.
- W3161585833 cites W1966544093 @default.
- W3161585833 cites W1968496055 @default.
- W3161585833 cites W2045200098 @default.
- W3161585833 cites W2046717331 @default.
- W3161585833 cites W2103939721 @default.
- W3161585833 cites W2108691203 @default.
- W3161585833 cites W2134610731 @default.
- W3161585833 cites W2167365741 @default.
- W3161585833 cites W2234466039 @default.
- W3161585833 cites W2296445552 @default.
- W3161585833 cites W2524637524 @default.
- W3161585833 cites W2749865336 @default.
- W3161585833 cites W2775385549 @default.
- W3161585833 cites W2802412756 @default.
- W3161585833 cites W2811384326 @default.
- W3161585833 cites W2903120633 @default.
- W3161585833 cites W2905566041 @default.
- W3161585833 cites W2906759948 @default.
- W3161585833 cites W2909475760 @default.
- W3161585833 cites W2964573743 @default.
- W3161585833 cites W2965929617 @default.
- W3161585833 cites W2966674791 @default.
- W3161585833 cites W2967431885 @default.
- W3161585833 cites W3002527405 @default.
- W3161585833 cites W3003924791 @default.
- W3161585833 cites W3004500412 @default.
- W3161585833 cites W3010200460 @default.
- W3161585833 cites W3010956907 @default.
- W3161585833 cites W3013273332 @default.
- W3161585833 cites W3013464546 @default.
- W3161585833 cites W3015535616 @default.
- W3161585833 cites W3017054426 @default.
- W3161585833 cites W3043072601 @default.
- W3161585833 cites W3087907581 @default.
- W3161585833 cites W3088576166 @default.
- W3161585833 cites W3090661556 @default.
- W3161585833 cites W3103352646 @default.
- W3161585833 cites W3117498368 @default.
- W3161585833 cites W3153961130 @default.
- W3161585833 doi "https://doi.org/10.1109/access.2021.3081747" @default.
- W3161585833 hasPublicationYear "2022" @default.
- W3161585833 type Work @default.
- W3161585833 sameAs 3161585833 @default.
- W3161585833 citedByCount "12" @default.
- W3161585833 countsByYear W31615858332021 @default.
- W3161585833 countsByYear W31615858332022 @default.
- W3161585833 countsByYear W31615858332023 @default.
- W3161585833 crossrefType "journal-article" @default.
- W3161585833 hasAuthorship W3161585833A5002026238 @default.
- W3161585833 hasAuthorship W3161585833A5002794907 @default.
- W3161585833 hasAuthorship W3161585833A5008454274 @default.
- W3161585833 hasAuthorship W3161585833A5019790169 @default.
- W3161585833 hasAuthorship W3161585833A5039034135 @default.
- W3161585833 hasAuthorship W3161585833A5040423887 @default.
- W3161585833 hasAuthorship W3161585833A5062444385 @default.
- W3161585833 hasAuthorship W3161585833A5065376302 @default.
- W3161585833 hasBestOaLocation W31615858331 @default.
- W3161585833 hasConcept C102392041 @default.
- W3161585833 hasConcept C105795698 @default.
- W3161585833 hasConcept C108583219 @default.
- W3161585833 hasConcept C111919701 @default.
- W3161585833 hasConcept C119857082 @default.
- W3161585833 hasConcept C126322002 @default.
- W3161585833 hasConcept C153180895 @default.
- W3161585833 hasConcept C154945302 @default.
- W3161585833 hasConcept C164705383 @default.
- W3161585833 hasConcept C2777711342 @default.
- W3161585833 hasConcept C2777935920 @default.
- W3161585833 hasConcept C2778205975 @default.
- W3161585833 hasConcept C2778751112 @default.
- W3161585833 hasConcept C2780092901 @default.
- W3161585833 hasConcept C2781326671 @default.
- W3161585833 hasConcept C33923547 @default.
- W3161585833 hasConcept C40993552 @default.
- W3161585833 hasConcept C41008148 @default.
- W3161585833 hasConcept C554190296 @default.
- W3161585833 hasConcept C71924100 @default.
- W3161585833 hasConcept C76155785 @default.
- W3161585833 hasConcept C81363708 @default.
- W3161585833 hasConcept C94915269 @default.
- W3161585833 hasConceptScore W3161585833C102392041 @default.
- W3161585833 hasConceptScore W3161585833C105795698 @default.
- W3161585833 hasConceptScore W3161585833C108583219 @default.