Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161603330> ?p ?o ?g. }
- W3161603330 endingPage "104301" @default.
- W3161603330 startingPage "104301" @default.
- W3161603330 abstract "When acoustic waves propagate through a volume of vortical flows, the strong nonlinear scattering lead the amplitude, the frequency, and the phase of the incident waves to change obviously. As one of the most significant problems in the area of aeroacoustics, the scattering of acoustic waves by a vortical flow plays a main role in industrial applications and scientific research. In this study, we start from an elementary vortex model. The scattering of plane acoustic waves from a Taylor vortex is investigated by solving two-dimensional Euler equations numerically in the time domain. To resolve the small-amplitude acoustic waves, a sixth-order-accurate compact Padé scheme is used for spatial derivatives and a fourth-order-accurate Runge-Kutta scheme is used to advance the solution in time. To minimize the reflection of outgoing waves, a buffer zone is used at the computational boundary. The computations of scattered fields with very small amplitudes are found to be in excellent agreement with a benchmark provided by previous studies. Simulations for the scattering from a Taylor vortex reveal that the amplitude of the scattered fields is strongly influenced by two dimensionless quantities: the vortex strength <inline-formula><tex-math id=M1>begin{document}${M_v}$end{document}</tex-math><alternatives><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M1.jpg/><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M1.png/></alternatives></inline-formula> and the length-scale ratio <inline-formula><tex-math id=M2>begin{document}$lambda /R$end{document}</tex-math><alternatives><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M2.jpg/><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M2.png/></alternatives></inline-formula>. Based on a global analysis of scale effects of these two dimensionless quantities on the scattering cross-section, the whole scattering domain defined on the <inline-formula><tex-math id=M3>begin{document}${M_v} - lambda /R$end{document}</tex-math><alternatives><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M3.jpg/><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M3.png/></alternatives></inline-formula> plane is divided into three subdomains. As the vortex strength <inline-formula><tex-math id=M4>begin{document}${M_v}$end{document}</tex-math><alternatives><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M4.jpg/><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M4.png/></alternatives></inline-formula> increases and the length-scale ratio <inline-formula><tex-math id=M5>begin{document}$lambda /R$end{document}</tex-math><alternatives><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M5.jpg/><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M5.png/></alternatives></inline-formula> decreases, the acoustic scattering from a compact vortex goes through the long-wavelength domain, the resonance domain, and the geometrical acoustics domain in turn. The associated scattered fields with the increasing of intensity show more irregularities. The scattering in the long-wavelength domain possesses four primary beams described by half-sine functions, which scales as <inline-formula><tex-math id=M6>begin{document}${M_v}{left( {lambda /R} right)^{ - 2}}$end{document}</tex-math><alternatives><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M6.jpg/><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M6.png/></alternatives></inline-formula>. In particular, the directivity of the scattered field with a very low Mach number and a very long wavelength behaves as <inline-formula><tex-math id=M7>begin{document}${M_v}{left( {lambda /R} right)^{ - 2}}left| {sin left( {theta /2} right)} right|$end{document}</tex-math><alternatives><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M7.jpg/><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M7.png/></alternatives></inline-formula>. In the resonance domain, the beams in the opposite direction to the incident waves decay rapidly. The rest of two beams follow the <inline-formula><tex-math id=M8>begin{document}${M_v}$end{document}</tex-math><alternatives><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M8.jpg/><graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=10-20202206_M8.png/></alternatives></inline-formula> scaling. The scattered fields are concentrated around the direction of the incident wave in the geometrical acoustics domain, where the primary beams are surrounded by several small sub-beams. The physical mechanism of the acoustic scattering caused by a vortex involves two different mechanisms, namely nonlinear scattering effect and linear long-range refraction effect." @default.
- W3161603330 created "2021-05-24" @default.
- W3161603330 creator A5000092843 @default.
- W3161603330 creator A5021236903 @default.
- W3161603330 creator A5021913798 @default.
- W3161603330 creator A5042007093 @default.
- W3161603330 creator A5076200245 @default.
- W3161603330 date "2021-01-01" @default.
- W3161603330 modified "2023-10-01" @default.
- W3161603330 title "Numerical investigation of scale effect on acoustic scattering by vortex" @default.
- W3161603330 cites W1965596619 @default.
- W3161603330 cites W1970972062 @default.
- W3161603330 cites W1971701857 @default.
- W3161603330 cites W1991643926 @default.
- W3161603330 cites W1993361864 @default.
- W3161603330 cites W1994441800 @default.
- W3161603330 cites W1994971012 @default.
- W3161603330 cites W1996610051 @default.
- W3161603330 cites W2001907665 @default.
- W3161603330 cites W2006986297 @default.
- W3161603330 cites W2012940420 @default.
- W3161603330 cites W2013202930 @default.
- W3161603330 cites W2016687950 @default.
- W3161603330 cites W2020318003 @default.
- W3161603330 cites W2050264452 @default.
- W3161603330 cites W2064078218 @default.
- W3161603330 cites W2064441740 @default.
- W3161603330 cites W2065596545 @default.
- W3161603330 cites W2066486563 @default.
- W3161603330 cites W2075326034 @default.
- W3161603330 cites W2102730197 @default.
- W3161603330 cites W2115007545 @default.
- W3161603330 cites W2137307482 @default.
- W3161603330 cites W2149146645 @default.
- W3161603330 cites W2788039287 @default.
- W3161603330 cites W3006435522 @default.
- W3161603330 cites W3111514711 @default.
- W3161603330 cites W3114597025 @default.
- W3161603330 doi "https://doi.org/10.7498/aps.70.20202206" @default.
- W3161603330 hasPublicationYear "2021" @default.
- W3161603330 type Work @default.
- W3161603330 sameAs 3161603330 @default.
- W3161603330 citedByCount "5" @default.
- W3161603330 countsByYear W31616033302021 @default.
- W3161603330 countsByYear W31616033302022 @default.
- W3161603330 crossrefType "journal-article" @default.
- W3161603330 hasAuthorship W3161603330A5000092843 @default.
- W3161603330 hasAuthorship W3161603330A5021236903 @default.
- W3161603330 hasAuthorship W3161603330A5021913798 @default.
- W3161603330 hasAuthorship W3161603330A5042007093 @default.
- W3161603330 hasAuthorship W3161603330A5076200245 @default.
- W3161603330 hasBestOaLocation W31616033301 @default.
- W3161603330 hasConcept C120665830 @default.
- W3161603330 hasConcept C120763676 @default.
- W3161603330 hasConcept C121332964 @default.
- W3161603330 hasConcept C121684219 @default.
- W3161603330 hasConcept C134306372 @default.
- W3161603330 hasConcept C140820882 @default.
- W3161603330 hasConcept C153013531 @default.
- W3161603330 hasConcept C180205008 @default.
- W3161603330 hasConcept C191486275 @default.
- W3161603330 hasConcept C204723758 @default.
- W3161603330 hasConcept C24890656 @default.
- W3161603330 hasConcept C33923547 @default.
- W3161603330 hasConcept C57879066 @default.
- W3161603330 hasConcept C68115822 @default.
- W3161603330 hasConcept C74650414 @default.
- W3161603330 hasConceptScore W3161603330C120665830 @default.
- W3161603330 hasConceptScore W3161603330C120763676 @default.
- W3161603330 hasConceptScore W3161603330C121332964 @default.
- W3161603330 hasConceptScore W3161603330C121684219 @default.
- W3161603330 hasConceptScore W3161603330C134306372 @default.
- W3161603330 hasConceptScore W3161603330C140820882 @default.
- W3161603330 hasConceptScore W3161603330C153013531 @default.
- W3161603330 hasConceptScore W3161603330C180205008 @default.
- W3161603330 hasConceptScore W3161603330C191486275 @default.
- W3161603330 hasConceptScore W3161603330C204723758 @default.
- W3161603330 hasConceptScore W3161603330C24890656 @default.
- W3161603330 hasConceptScore W3161603330C33923547 @default.
- W3161603330 hasConceptScore W3161603330C57879066 @default.
- W3161603330 hasConceptScore W3161603330C68115822 @default.
- W3161603330 hasConceptScore W3161603330C74650414 @default.
- W3161603330 hasIssue "10" @default.
- W3161603330 hasLocation W31616033301 @default.
- W3161603330 hasOpenAccess W3161603330 @default.
- W3161603330 hasPrimaryLocation W31616033301 @default.
- W3161603330 hasRelatedWork W105730666 @default.
- W3161603330 hasRelatedWork W1977116905 @default.
- W3161603330 hasRelatedWork W1989147181 @default.
- W3161603330 hasRelatedWork W1994441800 @default.
- W3161603330 hasRelatedWork W2016150009 @default.
- W3161603330 hasRelatedWork W2076577251 @default.
- W3161603330 hasRelatedWork W2237592091 @default.
- W3161603330 hasRelatedWork W2725077106 @default.
- W3161603330 hasRelatedWork W2779444388 @default.
- W3161603330 hasRelatedWork W3161603330 @default.
- W3161603330 hasVolume "70" @default.
- W3161603330 isParatext "false" @default.