Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161649047> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3161649047 abstract "In this paper, the effective deep-learning based methodology is developed for iris biometric authentication. Firstly, based on the U-Net model, the proposed system uses the semantic segmentation technology to localize and extract the region of interest (ROI) of iris. After the ROI of iris in the eye image is revealed, the inputted eye image will be cropped to the small-size eye image with the just-fitted ROI of iris. Then, the iris features of the cropped eye image are strengthened optionally by adaptive histogram equalization or Gabor filtering process. Finally, the cropped iris image is classified by the EfficientNet model. By the Chinese Academy of Sciences Institute of Automation (CASIA) v1 database, the proposed deep-learning based iris recognition scheme reaches the recognition accuracies up to 98%. Compared with the previous works, the proposed technology can provide the effective iris recognition accuracy for the biometrics applications with iris information." @default.
- W3161649047 created "2021-05-24" @default.
- W3161649047 creator A5003025198 @default.
- W3161649047 creator A5019252212 @default.
- W3161649047 creator A5087782667 @default.
- W3161649047 date "2021-03-27" @default.
- W3161649047 modified "2023-10-18" @default.
- W3161649047 title "Design and Analysis of Deep-Learning Based Iris Recognition Technologies by Combination of U-Net and EfficientNet" @default.
- W3161649047 cites W1901129140 @default.
- W3161649047 cites W1974821667 @default.
- W3161649047 cites W1977095724 @default.
- W3161649047 cites W2102796633 @default.
- W3161649047 cites W2118282683 @default.
- W3161649047 cites W2119550461 @default.
- W3161649047 cites W2209174485 @default.
- W3161649047 cites W2417429787 @default.
- W3161649047 cites W2783119741 @default.
- W3161649047 cites W2906732902 @default.
- W3161649047 cites W2939834648 @default.
- W3161649047 cites W3034971973 @default.
- W3161649047 cites W3107653507 @default.
- W3161649047 cites W3110437118 @default.
- W3161649047 doi "https://doi.org/10.1109/iciet51873.2021.9419589" @default.
- W3161649047 hasPublicationYear "2021" @default.
- W3161649047 type Work @default.
- W3161649047 sameAs 3161649047 @default.
- W3161649047 citedByCount "4" @default.
- W3161649047 countsByYear W31616490472021 @default.
- W3161649047 countsByYear W31616490472022 @default.
- W3161649047 countsByYear W31616490472023 @default.
- W3161649047 crossrefType "proceedings-article" @default.
- W3161649047 hasAuthorship W3161649047A5003025198 @default.
- W3161649047 hasAuthorship W3161649047A5019252212 @default.
- W3161649047 hasAuthorship W3161649047A5087782667 @default.
- W3161649047 hasConcept C108583219 @default.
- W3161649047 hasConcept C111919701 @default.
- W3161649047 hasConcept C112356035 @default.
- W3161649047 hasConcept C115961682 @default.
- W3161649047 hasConcept C124504099 @default.
- W3161649047 hasConcept C153180895 @default.
- W3161649047 hasConcept C154945302 @default.
- W3161649047 hasConcept C184297639 @default.
- W3161649047 hasConcept C19609008 @default.
- W3161649047 hasConcept C2779503344 @default.
- W3161649047 hasConcept C31972630 @default.
- W3161649047 hasConcept C41008148 @default.
- W3161649047 hasConcept C53533937 @default.
- W3161649047 hasConcept C89600930 @default.
- W3161649047 hasConcept C98045186 @default.
- W3161649047 hasConceptScore W3161649047C108583219 @default.
- W3161649047 hasConceptScore W3161649047C111919701 @default.
- W3161649047 hasConceptScore W3161649047C112356035 @default.
- W3161649047 hasConceptScore W3161649047C115961682 @default.
- W3161649047 hasConceptScore W3161649047C124504099 @default.
- W3161649047 hasConceptScore W3161649047C153180895 @default.
- W3161649047 hasConceptScore W3161649047C154945302 @default.
- W3161649047 hasConceptScore W3161649047C184297639 @default.
- W3161649047 hasConceptScore W3161649047C19609008 @default.
- W3161649047 hasConceptScore W3161649047C2779503344 @default.
- W3161649047 hasConceptScore W3161649047C31972630 @default.
- W3161649047 hasConceptScore W3161649047C41008148 @default.
- W3161649047 hasConceptScore W3161649047C53533937 @default.
- W3161649047 hasConceptScore W3161649047C89600930 @default.
- W3161649047 hasConceptScore W3161649047C98045186 @default.
- W3161649047 hasFunder F4320309618 @default.
- W3161649047 hasLocation W31616490471 @default.
- W3161649047 hasOpenAccess W3161649047 @default.
- W3161649047 hasPrimaryLocation W31616490471 @default.
- W3161649047 hasRelatedWork W1564834246 @default.
- W3161649047 hasRelatedWork W2023812372 @default.
- W3161649047 hasRelatedWork W2127515548 @default.
- W3161649047 hasRelatedWork W2145301513 @default.
- W3161649047 hasRelatedWork W2268960646 @default.
- W3161649047 hasRelatedWork W2370714421 @default.
- W3161649047 hasRelatedWork W2808546413 @default.
- W3161649047 hasRelatedWork W2907903261 @default.
- W3161649047 hasRelatedWork W3184257017 @default.
- W3161649047 hasRelatedWork W4214573895 @default.
- W3161649047 isParatext "false" @default.
- W3161649047 isRetracted "false" @default.
- W3161649047 magId "3161649047" @default.
- W3161649047 workType "article" @default.