Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161691710> ?p ?o ?g. }
- W3161691710 abstract "Doubly-intractable posterior distributions arise in many applications of statistics concerned with discrete and dependent data, including physics, spatial statistics, machine learning, the social sciences, and other fields. A specific example is psychometrics, which has adapted high-dimensional Ising models from machine learning, with a view to studying the interactions among binary item responses in educational assessments. To estimate high-dimensional Ising models from educational assessment data, $ell_1$-penalized nodewise logistic regressions have been used. Theoretical results in high-dimensional statistics show that $ell_1$-penalized nodewise logistic regressions can recover the true interaction structure with high probability, provided that certain assumptions are satisfied. Those assumptions are hard to verify in practice and may be violated, and quantifying the uncertainty about the estimated interaction structure and parameter estimators is challenging. We propose a Bayesian approach that helps quantify the uncertainty about the interaction structure and parameters without requiring strong assumptions, and can be applied to Ising models with thousands of parameters. We demonstrate the advantages of the proposed Bayesian approach compared with $ell_1$-penalized nodewise logistic regressions by simulation studies and applications to small and large educational data sets with up to 2,485 parameters. Among other things, the simulation studies suggest that the Bayesian approach is more robust against model misspecification due to omitted covariates than $ell_1$-penalized nodewise logistic regressions." @default.
- W3161691710 created "2021-05-24" @default.
- W3161691710 creator A5019299380 @default.
- W3161691710 creator A5026534904 @default.
- W3161691710 creator A5043640771 @default.
- W3161691710 date "2019-11-17" @default.
- W3161691710 modified "2023-09-24" @default.
- W3161691710 title "Bayesian Model Selection for High-Dimensional Ising Models, With Applications to Educational Data" @default.
- W3161691710 cites W1533758202 @default.
- W3161691710 cites W1603903339 @default.
- W3161691710 cites W1680396847 @default.
- W3161691710 cites W1861778536 @default.
- W3161691710 cites W1964607942 @default.
- W3161691710 cites W1968869397 @default.
- W3161691710 cites W1969415786 @default.
- W3161691710 cites W1974470274 @default.
- W3161691710 cites W1974651983 @default.
- W3161691710 cites W1982508956 @default.
- W3161691710 cites W1982652137 @default.
- W3161691710 cites W1984048068 @default.
- W3161691710 cites W1987997654 @default.
- W3161691710 cites W1994129134 @default.
- W3161691710 cites W2005883298 @default.
- W3161691710 cites W2007069447 @default.
- W3161691710 cites W2015530535 @default.
- W3161691710 cites W2021490033 @default.
- W3161691710 cites W2030023531 @default.
- W3161691710 cites W2033403400 @default.
- W3161691710 cites W2033900415 @default.
- W3161691710 cites W2034795216 @default.
- W3161691710 cites W2035192392 @default.
- W3161691710 cites W2037590223 @default.
- W3161691710 cites W2043983054 @default.
- W3161691710 cites W2045973738 @default.
- W3161691710 cites W2049228615 @default.
- W3161691710 cites W2050029156 @default.
- W3161691710 cites W2053061982 @default.
- W3161691710 cites W2056760934 @default.
- W3161691710 cites W2064794182 @default.
- W3161691710 cites W2068674173 @default.
- W3161691710 cites W2075954168 @default.
- W3161691710 cites W2077532179 @default.
- W3161691710 cites W2114169935 @default.
- W3161691710 cites W2114220616 @default.
- W3161691710 cites W2116416291 @default.
- W3161691710 cites W2125280835 @default.
- W3161691710 cites W2138309709 @default.
- W3161691710 cites W2139812092 @default.
- W3161691710 cites W2146620998 @default.
- W3161691710 cites W2151729750 @default.
- W3161691710 cites W2152246075 @default.
- W3161691710 cites W2154299075 @default.
- W3161691710 cites W2155910443 @default.
- W3161691710 cites W2159325249 @default.
- W3161691710 cites W2160268549 @default.
- W3161691710 cites W2167826316 @default.
- W3161691710 cites W2523856721 @default.
- W3161691710 cites W2552651938 @default.
- W3161691710 cites W2581158580 @default.
- W3161691710 cites W2725624739 @default.
- W3161691710 cites W2767326152 @default.
- W3161691710 cites W2805048085 @default.
- W3161691710 cites W2908623690 @default.
- W3161691710 cites W2949880283 @default.
- W3161691710 cites W2953423345 @default.
- W3161691710 cites W2962567350 @default.
- W3161691710 cites W2962989581 @default.
- W3161691710 cites W2963021623 @default.
- W3161691710 cites W2967557395 @default.
- W3161691710 cites W3016894763 @default.
- W3161691710 cites W3030080265 @default.
- W3161691710 cites W3031938913 @default.
- W3161691710 cites W3098679232 @default.
- W3161691710 cites W3098888484 @default.
- W3161691710 cites W3099078835 @default.
- W3161691710 cites W3099271930 @default.
- W3161691710 cites W3103506888 @default.
- W3161691710 cites W3128485298 @default.
- W3161691710 cites W3157752112 @default.
- W3161691710 cites W340056678 @default.
- W3161691710 cites W76157818 @default.
- W3161691710 cites W2620025422 @default.
- W3161691710 hasPublicationYear "2019" @default.
- W3161691710 type Work @default.
- W3161691710 sameAs 3161691710 @default.
- W3161691710 citedByCount "1" @default.
- W3161691710 countsByYear W31616917102020 @default.
- W3161691710 crossrefType "posted-content" @default.
- W3161691710 hasAuthorship W3161691710A5019299380 @default.
- W3161691710 hasAuthorship W3161691710A5026534904 @default.
- W3161691710 hasAuthorship W3161691710A5043640771 @default.
- W3161691710 hasConcept C105795698 @default.
- W3161691710 hasConcept C107673813 @default.
- W3161691710 hasConcept C119043178 @default.
- W3161691710 hasConcept C119857082 @default.
- W3161691710 hasConcept C121332964 @default.
- W3161691710 hasConcept C121864883 @default.
- W3161691710 hasConcept C149782125 @default.
- W3161691710 hasConcept C151956035 @default.
- W3161691710 hasConcept C154945302 @default.