Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161700323> ?p ?o ?g. }
- W3161700323 endingPage "1723" @default.
- W3161700323 startingPage "1708" @default.
- W3161700323 abstract "Hyperspectral image (HSI) super-resolution is commonly used to overcome the hardware limitations of existing hyperspectral imaging systems on spatial resolution. It fuses a low-resolution (LR) HSI and a high-resolution (HR) conventional image of the same scene to obtain an HR HSI. In this work, we propose a method that integrates a physical model and deep prior information. Specifically, a novel, yet effective two-stream fusion network is designed to serve as a regularizer for the fusion problem. This fusion problem is formulated as an optimization problem whose solution can be obtained by solving a Sylvester equation. Furthermore, the regularization parameter is simultaneously estimated to automatically adjust contribution of the physical model and the learned prior to reconstruct the final HR HSI. Experimental results on both simulated and real data demonstrate the superiority of the proposed method over other state-of-the-art methods on both quantitative and qualitative comparisons." @default.
- W3161700323 created "2021-05-24" @default.
- W3161700323 creator A5009808175 @default.
- W3161700323 creator A5010192477 @default.
- W3161700323 creator A5060114868 @default.
- W3161700323 creator A5063539992 @default.
- W3161700323 date "2022-04-01" @default.
- W3161700323 modified "2023-10-12" @default.
- W3161700323 title "Hyperspectral Image Super-Resolution via Deep Prior Regularization With Parameter Estimation" @default.
- W3161700323 cites W1677182931 @default.
- W3161700323 cites W1990231296 @default.
- W3161700323 cites W1990381576 @default.
- W3161700323 cites W2001298023 @default.
- W3161700323 cites W2012946078 @default.
- W3161700323 cites W2021046129 @default.
- W3161700323 cites W2031604650 @default.
- W3161700323 cites W2053081714 @default.
- W3161700323 cites W2083042020 @default.
- W3161700323 cites W2087263574 @default.
- W3161700323 cites W2088748973 @default.
- W3161700323 cites W2097259623 @default.
- W3161700323 cites W2100109944 @default.
- W3161700323 cites W2100329651 @default.
- W3161700323 cites W2116641053 @default.
- W3161700323 cites W2135364872 @default.
- W3161700323 cites W2149471024 @default.
- W3161700323 cites W2152254169 @default.
- W3161700323 cites W2162842940 @default.
- W3161700323 cites W2194775991 @default.
- W3161700323 cites W2214802144 @default.
- W3161700323 cites W2221899823 @default.
- W3161700323 cites W2302255633 @default.
- W3161700323 cites W2327302159 @default.
- W3161700323 cites W2342662179 @default.
- W3161700323 cites W2510397035 @default.
- W3161700323 cites W2531751415 @default.
- W3161700323 cites W2562637781 @default.
- W3161700323 cites W2592312604 @default.
- W3161700323 cites W2625894731 @default.
- W3161700323 cites W2748530166 @default.
- W3161700323 cites W2765739551 @default.
- W3161700323 cites W2777033955 @default.
- W3161700323 cites W2792111852 @default.
- W3161700323 cites W2804744787 @default.
- W3161700323 cites W2887695188 @default.
- W3161700323 cites W2889107641 @default.
- W3161700323 cites W2889923760 @default.
- W3161700323 cites W2900435111 @default.
- W3161700323 cites W2910457605 @default.
- W3161700323 cites W2953478519 @default.
- W3161700323 cites W2963284277 @default.
- W3161700323 cites W2963470893 @default.
- W3161700323 cites W2963980268 @default.
- W3161700323 cites W3008789903 @default.
- W3161700323 cites W3008911924 @default.
- W3161700323 cites W3015489827 @default.
- W3161700323 cites W3026587394 @default.
- W3161700323 cites W3034400067 @default.
- W3161700323 cites W3098542449 @default.
- W3161700323 cites W3099843321 @default.
- W3161700323 cites W3104960002 @default.
- W3161700323 cites W3105425607 @default.
- W3161700323 cites W4292363360 @default.
- W3161700323 doi "https://doi.org/10.1109/tcsvt.2021.3078559" @default.
- W3161700323 hasPublicationYear "2022" @default.
- W3161700323 type Work @default.
- W3161700323 sameAs 3161700323 @default.
- W3161700323 citedByCount "25" @default.
- W3161700323 countsByYear W31617003232022 @default.
- W3161700323 countsByYear W31617003232023 @default.
- W3161700323 crossrefType "journal-article" @default.
- W3161700323 hasAuthorship W3161700323A5009808175 @default.
- W3161700323 hasAuthorship W3161700323A5010192477 @default.
- W3161700323 hasAuthorship W3161700323A5060114868 @default.
- W3161700323 hasAuthorship W3161700323A5063539992 @default.
- W3161700323 hasBestOaLocation W31617003232 @default.
- W3161700323 hasConcept C11413529 @default.
- W3161700323 hasConcept C115961682 @default.
- W3161700323 hasConcept C137836250 @default.
- W3161700323 hasConcept C138885662 @default.
- W3161700323 hasConcept C153180895 @default.
- W3161700323 hasConcept C154945302 @default.
- W3161700323 hasConcept C158525013 @default.
- W3161700323 hasConcept C159078339 @default.
- W3161700323 hasConcept C205372480 @default.
- W3161700323 hasConcept C2776135515 @default.
- W3161700323 hasConcept C31972630 @default.
- W3161700323 hasConcept C33954974 @default.
- W3161700323 hasConcept C41008148 @default.
- W3161700323 hasConcept C41895202 @default.
- W3161700323 hasConcept C69744172 @default.
- W3161700323 hasConceptScore W3161700323C11413529 @default.
- W3161700323 hasConceptScore W3161700323C115961682 @default.
- W3161700323 hasConceptScore W3161700323C137836250 @default.
- W3161700323 hasConceptScore W3161700323C138885662 @default.
- W3161700323 hasConceptScore W3161700323C153180895 @default.
- W3161700323 hasConceptScore W3161700323C154945302 @default.
- W3161700323 hasConceptScore W3161700323C158525013 @default.