Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161707436> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3161707436 abstract "The aim of this study is to provide a noninvasive, radiological image-based Computer Aided Diagnosis (CAD) able to distinguish between high aggressive (Gleason Score (GS) >= 4+3) and low-aggressive (GS<= 3+4) Prostate Cancers (PCa). The system exploits the use of Machine Learning (ML) and Deep Learning (DL) on biparametric Magnetic Resonance Images coming from Candiolo IRCCS and San Giovanni Molinette hospital. Regarding the ML approach, once tumor areas have been manually segmented, features of first order statistics, intensity-based and texture features are extracted, both from T2WI and ADC maps. The study carries out a parallel analysis of ten different Datasets, which differ in type of feature (3D or 2D), voxel spacing, application of filters, and bin number. Datasets have been pre-processed using data cleaning techniques, then Univariate Analysis (UA) and Multivariable Analysis (MA) are carried out. The UA involves the calculation of the area under the ROC curves (AUC) of each feature, Mann Witney U test and correlation analysis, both between each feature vector and the output (classification). The MA includes the Genetic Algorithm (GA), the Minimum Redundancy Maximum Relevance (MRMR) and the Affinity Propagation (AP) methods. SVM classifiers have been optimized, using four Feature Selection strategies. The first one consists of evaluating the 7-fold cross-validation performances of the model trained with an increasing number of features, added one by one in descending order of AUC, until the overfitting point is found. The others use the subsets resulting from the three multivariable algorithms. At the end, the best ML classifier is a T2 SVM model with polynomial kernel, trained with features selected by GA. It obtained a 100% accuracy in the Training Set (TRS), high performance in terms of accuracy (93.75%), specificity (83,33%) and sensitivity (100%) in the Test Set (TSS), but these decreased on the validation set (62.07%, 70.59%, and 50% respectively). Regarding the DL approach, once the ROIs (3x3 and 5x5 pixel, totally inside the lesion) have been extracted, both from T2WI and ADC maps, Convolutional Neural Networks (CNN) with 1, 2, and 3 Convolutional Layers are tested. Several CNNs are trained, different in size and number of filters, number of neurons, and set parameters. For the dataset division, we proceeded at first, as in the ML part, maintaining the Molinette lesions as an external validation set and dividing the ROIs randomly into TRS and TSS, and, then, selecting the lesions at random, so that ROIs belonging to the same lesion could not be present in both the TRS and TSS and adding some Molinette lesions in the TRS. The resulting best DL classifier is a model trained on T2 ROI 5x5 with 3 convo- lutional layers. The performances obtained in terms of accuracy, specificity, and sensitivity on the MRI slices are: 96.2%, 96.3% and 96.1% in the TRS; 62.5%, 87.5% and 54.2% in the TSS; 44.9%, 46.2% and 43.5% in the validation set. The results from ML and DL approaches show lower results in the validation sets due to the low ability of the classifiers to generalize the problem. In particular, the best ML model achieves better performance than the best DL one, even if the latter one has been trained with a bigger TRS. The generalization problem must be reduced increasing the number of samples in the datasets, this could increase the performance of both ML and DL models." @default.
- W3161707436 created "2021-05-24" @default.
- W3161707436 creator A5041925799 @default.
- W3161707436 date "2020-12-17" @default.
- W3161707436 modified "2023-09-27" @default.
- W3161707436 title "Characterization of Prostate Cancer aggressiveness based on bi-parametric MRI." @default.
- W3161707436 hasPublicationYear "2020" @default.
- W3161707436 type Work @default.
- W3161707436 sameAs 3161707436 @default.
- W3161707436 citedByCount "0" @default.
- W3161707436 crossrefType "journal-article" @default.
- W3161707436 hasAuthorship W3161707436A5041925799 @default.
- W3161707436 hasConcept C119857082 @default.
- W3161707436 hasConcept C12267149 @default.
- W3161707436 hasConcept C138885662 @default.
- W3161707436 hasConcept C148483581 @default.
- W3161707436 hasConcept C148524875 @default.
- W3161707436 hasConcept C153180895 @default.
- W3161707436 hasConcept C154945302 @default.
- W3161707436 hasConcept C22019652 @default.
- W3161707436 hasConcept C2776401178 @default.
- W3161707436 hasConcept C41008148 @default.
- W3161707436 hasConcept C41895202 @default.
- W3161707436 hasConcept C50644808 @default.
- W3161707436 hasConcept C54170458 @default.
- W3161707436 hasConcept C58471807 @default.
- W3161707436 hasConceptScore W3161707436C119857082 @default.
- W3161707436 hasConceptScore W3161707436C12267149 @default.
- W3161707436 hasConceptScore W3161707436C138885662 @default.
- W3161707436 hasConceptScore W3161707436C148483581 @default.
- W3161707436 hasConceptScore W3161707436C148524875 @default.
- W3161707436 hasConceptScore W3161707436C153180895 @default.
- W3161707436 hasConceptScore W3161707436C154945302 @default.
- W3161707436 hasConceptScore W3161707436C22019652 @default.
- W3161707436 hasConceptScore W3161707436C2776401178 @default.
- W3161707436 hasConceptScore W3161707436C41008148 @default.
- W3161707436 hasConceptScore W3161707436C41895202 @default.
- W3161707436 hasConceptScore W3161707436C50644808 @default.
- W3161707436 hasConceptScore W3161707436C54170458 @default.
- W3161707436 hasConceptScore W3161707436C58471807 @default.
- W3161707436 hasLocation W31617074361 @default.
- W3161707436 hasOpenAccess W3161707436 @default.
- W3161707436 hasPrimaryLocation W31617074361 @default.
- W3161707436 hasRelatedWork W1414046482 @default.
- W3161707436 hasRelatedWork W2019784121 @default.
- W3161707436 hasRelatedWork W2067630759 @default.
- W3161707436 hasRelatedWork W2144689516 @default.
- W3161707436 hasRelatedWork W2529446434 @default.
- W3161707436 hasRelatedWork W2745765293 @default.
- W3161707436 hasRelatedWork W2765955914 @default.
- W3161707436 hasRelatedWork W2888710204 @default.
- W3161707436 hasRelatedWork W2912199138 @default.
- W3161707436 hasRelatedWork W2944299734 @default.
- W3161707436 hasRelatedWork W2947931368 @default.
- W3161707436 hasRelatedWork W2975022009 @default.
- W3161707436 hasRelatedWork W2983816236 @default.
- W3161707436 hasRelatedWork W2990280407 @default.
- W3161707436 hasRelatedWork W3002582591 @default.
- W3161707436 hasRelatedWork W3040502522 @default.
- W3161707436 hasRelatedWork W3040766887 @default.
- W3161707436 hasRelatedWork W3166027078 @default.
- W3161707436 hasRelatedWork W3170170934 @default.
- W3161707436 hasRelatedWork W3202606534 @default.
- W3161707436 isParatext "false" @default.
- W3161707436 isRetracted "false" @default.
- W3161707436 magId "3161707436" @default.
- W3161707436 workType "article" @default.