Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161788933> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3161788933 endingPage "23" @default.
- W3161788933 startingPage "1" @default.
- W3161788933 abstract "In modern statistics, interests shift from pursuing the uniformly minimum variance unbiased estimator to reducing mean squared error (MSE) or residual squared error. Shrinkage based estimation and regression methods offer better prediction accuracy and improved interpretation. However, the characterization of such optimal statistics in terms of minimizing MSE remains open and challenging in many problems, for example estimating treatment effect in adaptive clinical trials with pre-planned modifications to design aspects based on accumulated data. From an alternative perspective, we propose a deep neural network based automatic method to construct an improved estimator from existing ones. Theoretical properties are studied to provide guidance on applicability of our estimator to seek potential improvement. Simulation studies demonstrate that the proposed method has considerable finite-sample efficiency gain as compared with several common estimators. In the Adaptive COVID-19 Treatment Trial (ACTT) as an important application, our ensemble estimator essentially contributes to a more ethical and efficient adaptive clinical trial with fewer patients enrolled. The proposed framework can be generally applied to various statistical problems, and can be served as a reference measure to guide statistical research." @default.
- W3161788933 created "2021-05-24" @default.
- W3161788933 creator A5021432602 @default.
- W3161788933 creator A5069556286 @default.
- W3161788933 creator A5081722621 @default.
- W3161788933 date "2023-09-20" @default.
- W3161788933 modified "2023-09-27" @default.
- W3161788933 title "Deep Neural Networks Guided Ensemble Learning for Point Estimation" @default.
- W3161788933 cites W1584444527 @default.
- W3161788933 cites W1853801206 @default.
- W3161788933 cites W1855169650 @default.
- W3161788933 cites W1970772933 @default.
- W3161788933 cites W2010622913 @default.
- W3161788933 cites W2027388462 @default.
- W3161788933 cites W2029917153 @default.
- W3161788933 cites W2030526274 @default.
- W3161788933 cites W2087347434 @default.
- W3161788933 cites W2091280316 @default.
- W3161788933 cites W2096904991 @default.
- W3161788933 cites W2110242523 @default.
- W3161788933 cites W2111754208 @default.
- W3161788933 cites W2114060717 @default.
- W3161788933 cites W2135046866 @default.
- W3161788933 cites W2138988713 @default.
- W3161788933 cites W2312358422 @default.
- W3161788933 cites W2528305538 @default.
- W3161788933 cites W285022973 @default.
- W3161788933 cites W2946302218 @default.
- W3161788933 cites W3018782821 @default.
- W3161788933 cites W3082662855 @default.
- W3161788933 cites W3102476541 @default.
- W3161788933 cites W3102511045 @default.
- W3161788933 cites W4233056867 @default.
- W3161788933 doi "https://doi.org/10.1080/19466315.2023.2260776" @default.
- W3161788933 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8132237" @default.
- W3161788933 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34012994" @default.
- W3161788933 hasPublicationYear "2023" @default.
- W3161788933 type Work @default.
- W3161788933 sameAs 3161788933 @default.
- W3161788933 citedByCount "0" @default.
- W3161788933 crossrefType "journal-article" @default.
- W3161788933 hasAuthorship W3161788933A5021432602 @default.
- W3161788933 hasAuthorship W3161788933A5069556286 @default.
- W3161788933 hasAuthorship W3161788933A5081722621 @default.
- W3161788933 hasConcept C105795698 @default.
- W3161788933 hasConcept C11413529 @default.
- W3161788933 hasConcept C119857082 @default.
- W3161788933 hasConcept C121955636 @default.
- W3161788933 hasConcept C129848803 @default.
- W3161788933 hasConcept C139945424 @default.
- W3161788933 hasConcept C144133560 @default.
- W3161788933 hasConcept C154945302 @default.
- W3161788933 hasConcept C155512373 @default.
- W3161788933 hasConcept C165646398 @default.
- W3161788933 hasConcept C185429906 @default.
- W3161788933 hasConcept C191393472 @default.
- W3161788933 hasConcept C196083921 @default.
- W3161788933 hasConcept C33923547 @default.
- W3161788933 hasConcept C41008148 @default.
- W3161788933 hasConcept C50644808 @default.
- W3161788933 hasConcept C83546350 @default.
- W3161788933 hasConceptScore W3161788933C105795698 @default.
- W3161788933 hasConceptScore W3161788933C11413529 @default.
- W3161788933 hasConceptScore W3161788933C119857082 @default.
- W3161788933 hasConceptScore W3161788933C121955636 @default.
- W3161788933 hasConceptScore W3161788933C129848803 @default.
- W3161788933 hasConceptScore W3161788933C139945424 @default.
- W3161788933 hasConceptScore W3161788933C144133560 @default.
- W3161788933 hasConceptScore W3161788933C154945302 @default.
- W3161788933 hasConceptScore W3161788933C155512373 @default.
- W3161788933 hasConceptScore W3161788933C165646398 @default.
- W3161788933 hasConceptScore W3161788933C185429906 @default.
- W3161788933 hasConceptScore W3161788933C191393472 @default.
- W3161788933 hasConceptScore W3161788933C196083921 @default.
- W3161788933 hasConceptScore W3161788933C33923547 @default.
- W3161788933 hasConceptScore W3161788933C41008148 @default.
- W3161788933 hasConceptScore W3161788933C50644808 @default.
- W3161788933 hasConceptScore W3161788933C83546350 @default.
- W3161788933 hasLocation W31617889331 @default.
- W3161788933 hasLocation W31617889332 @default.
- W3161788933 hasOpenAccess W3161788933 @default.
- W3161788933 hasPrimaryLocation W31617889331 @default.
- W3161788933 hasRelatedWork W1513121561 @default.
- W3161788933 hasRelatedWork W2521753262 @default.
- W3161788933 hasRelatedWork W2781092925 @default.
- W3161788933 hasRelatedWork W2924280721 @default.
- W3161788933 hasRelatedWork W3145407772 @default.
- W3161788933 hasRelatedWork W3203515362 @default.
- W3161788933 hasRelatedWork W3211877255 @default.
- W3161788933 hasRelatedWork W4286916711 @default.
- W3161788933 hasRelatedWork W4382516291 @default.
- W3161788933 hasRelatedWork W858226471 @default.
- W3161788933 isParatext "false" @default.
- W3161788933 isRetracted "false" @default.
- W3161788933 magId "3161788933" @default.
- W3161788933 workType "article" @default.