Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161803179> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3161803179 endingPage "105809" @default.
- W3161803179 startingPage "105809" @default.
- W3161803179 abstract "Low-cost sensors (LCS) can construct a high spatial and temporal resolution PM 2.5 network but are affected by environmental parameters such as relative humidity and temperature. The data generated by LCS are inaccurate and require calibration against a reference instrument. This study has applied nine machine learning (ML) regression algorithms for Plantower PMS 5003 LCS calibration and compared their performance. The nine ML algorithms applied in this study are: (a) Multiple Linear Regression (MLR); (b) Lasso regression (L1); (c) Ridge regression (L2); (d) Support Vector Regression (SVR); (e) k- Nearest Neighbour (kNN); (f) Multilayer Perceptron (MLP); (g) Regression Tree (RT); (h) Random Forest (RF); (i) Gradient Boosting (GB). The comparison exhibits that kNN, RF and GB have the best performance out of all the algorithms with train scores of 0.99 and test scores of 0.97, 0.96 and 0.95 respectively. This study validates the capability of ML algorithms for the calibration of LCS. • Evaluated nine regression algorithms for low-cost sensor calibration. • Linear models are underfitting while regression tree is overfitting. • k- Nearest Neighbour and Random Forest are providing accurate results. • Gradient Boosting is also suited for low-cost sensor calibration. • Validates the capability of machine learning algorithms for calibration." @default.
- W3161803179 created "2021-05-24" @default.
- W3161803179 creator A5010103203 @default.
- W3161803179 creator A5022188786 @default.
- W3161803179 date "2021-09-01" @default.
- W3161803179 modified "2023-10-17" @default.
- W3161803179 title "Evaluation of nine machine learning regression algorithms for calibration of low-cost PM2.5 sensor" @default.
- W3161803179 cites W1584236903 @default.
- W3161803179 cites W1617145133 @default.
- W3161803179 cites W1967433657 @default.
- W3161803179 cites W1971693165 @default.
- W3161803179 cites W2050823392 @default.
- W3161803179 cites W2055361278 @default.
- W3161803179 cites W2106839690 @default.
- W3161803179 cites W2607350314 @default.
- W3161803179 cites W2741056528 @default.
- W3161803179 cites W2792687421 @default.
- W3161803179 cites W2795037687 @default.
- W3161803179 cites W2796479994 @default.
- W3161803179 cites W2801553349 @default.
- W3161803179 cites W2888083765 @default.
- W3161803179 cites W2899440314 @default.
- W3161803179 cites W2906135971 @default.
- W3161803179 cites W2922476388 @default.
- W3161803179 cites W2945020114 @default.
- W3161803179 cites W2962249211 @default.
- W3161803179 cites W2969377071 @default.
- W3161803179 cites W2977132883 @default.
- W3161803179 cites W2979326004 @default.
- W3161803179 cites W2986416021 @default.
- W3161803179 cites W2989951998 @default.
- W3161803179 cites W2991186918 @default.
- W3161803179 cites W2995512905 @default.
- W3161803179 cites W2997698625 @default.
- W3161803179 cites W2999896177 @default.
- W3161803179 cites W3017269091 @default.
- W3161803179 cites W3037242982 @default.
- W3161803179 cites W3082621588 @default.
- W3161803179 cites W3100094007 @default.
- W3161803179 cites W3100612584 @default.
- W3161803179 cites W3111205636 @default.
- W3161803179 cites W3124143591 @default.
- W3161803179 doi "https://doi.org/10.1016/j.jaerosci.2021.105809" @default.
- W3161803179 hasPublicationYear "2021" @default.
- W3161803179 type Work @default.
- W3161803179 sameAs 3161803179 @default.
- W3161803179 citedByCount "27" @default.
- W3161803179 countsByYear W31618031792021 @default.
- W3161803179 countsByYear W31618031792022 @default.
- W3161803179 countsByYear W31618031792023 @default.
- W3161803179 crossrefType "journal-article" @default.
- W3161803179 hasAuthorship W3161803179A5010103203 @default.
- W3161803179 hasAuthorship W3161803179A5022188786 @default.
- W3161803179 hasConcept C105795698 @default.
- W3161803179 hasConcept C11413529 @default.
- W3161803179 hasConcept C119857082 @default.
- W3161803179 hasConcept C152877465 @default.
- W3161803179 hasConcept C154945302 @default.
- W3161803179 hasConcept C165838908 @default.
- W3161803179 hasConcept C33923547 @default.
- W3161803179 hasConcept C41008148 @default.
- W3161803179 hasConcept C83546350 @default.
- W3161803179 hasConceptScore W3161803179C105795698 @default.
- W3161803179 hasConceptScore W3161803179C11413529 @default.
- W3161803179 hasConceptScore W3161803179C119857082 @default.
- W3161803179 hasConceptScore W3161803179C152877465 @default.
- W3161803179 hasConceptScore W3161803179C154945302 @default.
- W3161803179 hasConceptScore W3161803179C165838908 @default.
- W3161803179 hasConceptScore W3161803179C33923547 @default.
- W3161803179 hasConceptScore W3161803179C41008148 @default.
- W3161803179 hasConceptScore W3161803179C83546350 @default.
- W3161803179 hasLocation W31618031791 @default.
- W3161803179 hasOpenAccess W3161803179 @default.
- W3161803179 hasPrimaryLocation W31618031791 @default.
- W3161803179 hasRelatedWork W1780528837 @default.
- W3161803179 hasRelatedWork W2044092378 @default.
- W3161803179 hasRelatedWork W2358377356 @default.
- W3161803179 hasRelatedWork W2981239824 @default.
- W3161803179 hasRelatedWork W3120225743 @default.
- W3161803179 hasRelatedWork W3159789586 @default.
- W3161803179 hasRelatedWork W3186839548 @default.
- W3161803179 hasRelatedWork W3204172510 @default.
- W3161803179 hasRelatedWork W4220799502 @default.
- W3161803179 hasRelatedWork W4297435300 @default.
- W3161803179 hasVolume "157" @default.
- W3161803179 isParatext "false" @default.
- W3161803179 isRetracted "false" @default.
- W3161803179 magId "3161803179" @default.
- W3161803179 workType "article" @default.