Matches in SemOpenAlex for { <https://semopenalex.org/work/W3161832554> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3161832554 abstract "As one of the most important types of artificial ground features, building images and outlines are widely used in map updating, GIS analysis, urban planning, and environmental modelling etc. Fast and accurate segmentation of buildings is one of the hot and difficult topics in remote sensing image processing research for many years. This paper tries to apply the U-Net deep neural network model with ResNet encoder to remote sensing image segmentation for building extraction. First, we obtain some remote sensing images through some open datasets, and then we outline the building images to get the building mask, then we divide the dataset into eight to two to form two datasets for training and validation, and then we use this dataset to train and validate the U-Net model. The results show that the model's MIoU (Mean Intersection over Union) reached 0.83, and the model achieved a good building segmentation effect. This model can be used for building segmentation with clear boundaries, however, there are also a few improvements to be resolved in further studies, more accurate results, more straight outlines, less misclassification, etc." @default.
- W3161832554 created "2021-05-24" @default.
- W3161832554 creator A5046511369 @default.
- W3161832554 creator A5073965149 @default.
- W3161832554 creator A5082797513 @default.
- W3161832554 date "2020-12-01" @default.
- W3161832554 modified "2023-09-27" @default.
- W3161832554 title "Building segmentation from satellite imagery using U-Net with ResNet encoder" @default.
- W3161832554 cites W1975520234 @default.
- W3161832554 cites W2049916020 @default.
- W3161832554 cites W2131438174 @default.
- W3161832554 cites W2148868685 @default.
- W3161832554 cites W2155910279 @default.
- W3161832554 cites W2305745203 @default.
- W3161832554 cites W2618530766 @default.
- W3161832554 cites W2794284562 @default.
- W3161832554 cites W2884436604 @default.
- W3161832554 cites W2963037989 @default.
- W3161832554 cites W4253153980 @default.
- W3161832554 doi "https://doi.org/10.1109/icmcce51767.2020.00431" @default.
- W3161832554 hasPublicationYear "2020" @default.
- W3161832554 type Work @default.
- W3161832554 sameAs 3161832554 @default.
- W3161832554 citedByCount "5" @default.
- W3161832554 countsByYear W31618325542022 @default.
- W3161832554 countsByYear W31618325542023 @default.
- W3161832554 crossrefType "proceedings-article" @default.
- W3161832554 hasAuthorship W3161832554A5046511369 @default.
- W3161832554 hasAuthorship W3161832554A5073965149 @default.
- W3161832554 hasAuthorship W3161832554A5082797513 @default.
- W3161832554 hasConcept C108583219 @default.
- W3161832554 hasConcept C124101348 @default.
- W3161832554 hasConcept C124504099 @default.
- W3161832554 hasConcept C153180895 @default.
- W3161832554 hasConcept C154945302 @default.
- W3161832554 hasConcept C205649164 @default.
- W3161832554 hasConcept C2778102629 @default.
- W3161832554 hasConcept C31972630 @default.
- W3161832554 hasConcept C41008148 @default.
- W3161832554 hasConcept C50644808 @default.
- W3161832554 hasConcept C58640448 @default.
- W3161832554 hasConcept C62649853 @default.
- W3161832554 hasConcept C64543145 @default.
- W3161832554 hasConcept C89600930 @default.
- W3161832554 hasConceptScore W3161832554C108583219 @default.
- W3161832554 hasConceptScore W3161832554C124101348 @default.
- W3161832554 hasConceptScore W3161832554C124504099 @default.
- W3161832554 hasConceptScore W3161832554C153180895 @default.
- W3161832554 hasConceptScore W3161832554C154945302 @default.
- W3161832554 hasConceptScore W3161832554C205649164 @default.
- W3161832554 hasConceptScore W3161832554C2778102629 @default.
- W3161832554 hasConceptScore W3161832554C31972630 @default.
- W3161832554 hasConceptScore W3161832554C41008148 @default.
- W3161832554 hasConceptScore W3161832554C50644808 @default.
- W3161832554 hasConceptScore W3161832554C58640448 @default.
- W3161832554 hasConceptScore W3161832554C62649853 @default.
- W3161832554 hasConceptScore W3161832554C64543145 @default.
- W3161832554 hasConceptScore W3161832554C89600930 @default.
- W3161832554 hasLocation W31618325541 @default.
- W3161832554 hasOpenAccess W3161832554 @default.
- W3161832554 hasPrimaryLocation W31618325541 @default.
- W3161832554 hasRelatedWork W1631910785 @default.
- W3161832554 hasRelatedWork W1669643531 @default.
- W3161832554 hasRelatedWork W2110230079 @default.
- W3161832554 hasRelatedWork W2117664411 @default.
- W3161832554 hasRelatedWork W2117933325 @default.
- W3161832554 hasRelatedWork W2122581818 @default.
- W3161832554 hasRelatedWork W2159066190 @default.
- W3161832554 hasRelatedWork W2739874619 @default.
- W3161832554 hasRelatedWork W2790662084 @default.
- W3161832554 hasRelatedWork W2948658236 @default.
- W3161832554 isParatext "false" @default.
- W3161832554 isRetracted "false" @default.
- W3161832554 magId "3161832554" @default.
- W3161832554 workType "article" @default.